marquesafonso's picture
add example in readme
ae78f71
|
raw
history blame
3.5 kB
---
license: mit
language:
- pt
---
# bertimbau-large-ner-total
This model card aims to simplify the use of the [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert) for the Named Entity Recognition task.
For this model card the we used the <mark style="background-color: grey"> BERT-CRF (total scenario, 10 classes) </mark> model available in the [ner_evaluation](https://github.com/neuralmind-ai/portuguese-bert/tree/master/ner_evaluation) folder of the original Bertimbau repo.
Available classes are:
+ PESSOA
+ ORGANIZACAO
+ LOCAL
+ TEMPO
+ VALOR
+ ABSTRACCAO
+ ACONTECIMENTO
+ COISA
+ OBRA
+ OUTRO
## Usage
```
# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("marquesafonso/bertimbau-large-ner-total")
model = AutoModelForTokenClassification.from_pretrained("marquesafonso/bertimbau-large-ner-total")
```
## Example
```
from transformers import pipeline
pipe = pipeline("ner", model="marquesafonso/bertimbau-large-ner-total", aggregation_strategy='simple')
sentence = "James Marsh, realizador de filmes como A Teoria de Tudo ou Homem no Arame, assumiu a missão de criar uma obra biográfica sobre Samue Beckett, figura ímpar da literatura e da dramaturgia do século XX. O guião foi escrito pelo escocês Neil Forsyth, vencedor de dois Baftas."
result = pipe([sentence])
print(f"{sentence}\n{result}")
# James Marsh, realizador de filmes como A Teoria de Tudo ou Homem no Arame, assumiu a missão de criar uma obra biográfica sobre Samue Beckett, figura ímpar da literatura e da dramaturgia do século XX. O guião foi escrito pelo escocês Neil Forsyth, vencedor de dois Baftas.
# [[
# {'entity_group': 'PESSOA', 'score': 0.99737316, 'word': 'James Marsh', 'start': 0, 'end': 11},
# {'entity_group': 'OBRA', 'score': 0.9823761, 'word': 'A Teoria de Tudo', 'start': 39, 'end': 55},
# {'entity_group': 'OBRA', 'score': 0.96812135, 'word': 'Homem no Arame', 'start': 59, 'end': 73},
# {'entity_group': 'PESSOA', 'score': 0.9954967, 'word': 'Samue Beckett', 'start': 127, 'end': 140},
# {'entity_group': 'TEMPO', 'score': 0.97845674, 'word': 'século XX', 'start': 189, 'end': 198},
# {'entity_group': 'PESSOA', 'score': 0.9962597, 'word': 'Neil Forsyth', 'start': 233, 'end': 245},
# {'entity_group': 'OUTRO', 'score': 0.7552187, 'word': 'Baftas', 'start': 264, 'end': 270}
# ]]
```
## Acknowledgements
This work is an adaptation of [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert). You may check and/or cite their [work](http://arxiv.org/abs/1909.10649):
```
@InProceedings{souza2020bertimbau,
author="Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto",
editor="Cerri, Ricardo and Prati, Ronaldo C.",
title="BERTimbau: Pretrained BERT Models for Brazilian Portuguese",
booktitle="Intelligent Systems",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="403--417",
isbn="978-3-030-61377-8"
}
@article{souza2019portuguese,
title={Portuguese Named Entity Recognition using BERT-CRF},
author={Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto},
journal={arXiv preprint arXiv:1909.10649},
url={http://arxiv.org/abs/1909.10649},
year={2019}
}
```
Note that the authors - Fabio Capuano de Souza, Rodrigo Nogueira, Roberto de Alencar Lotufo - have used an MIT LICENSE for their work.