chore(): add py pipeline
Browse files- instruct_pipeline.py +212 -0
instruct_pipeline.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from transformers import Pipeline, PreTrainedTokenizer
|
7 |
+
|
8 |
+
from transformers.utils import is_tf_available
|
9 |
+
|
10 |
+
if is_tf_available():
|
11 |
+
import tensorflow as tf
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
INSTRUCTION_KEY = "### Instruction:"
|
16 |
+
RESPONSE_KEY = "### Response:"
|
17 |
+
END_KEY = "### End"
|
18 |
+
INTRO_BLURB = (
|
19 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
20 |
+
)
|
21 |
+
|
22 |
+
# This is the prompt that is used for generating responses using an already trained model. It ends with the response
|
23 |
+
# key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
|
24 |
+
PROMPT_FOR_GENERATION_FORMAT = """{intro}
|
25 |
+
|
26 |
+
{instruction_key}
|
27 |
+
{instruction}
|
28 |
+
|
29 |
+
{response_key}
|
30 |
+
""".format(
|
31 |
+
intro=INTRO_BLURB,
|
32 |
+
instruction_key=INSTRUCTION_KEY,
|
33 |
+
instruction="{instruction}",
|
34 |
+
response_key=RESPONSE_KEY,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int:
|
39 |
+
"""Gets the token ID for a given string that has been added to the tokenizer as a special token.
|
40 |
+
|
41 |
+
When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are
|
42 |
+
treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
tokenizer (PreTrainedTokenizer): the tokenizer
|
46 |
+
key (str): the key to convert to a single token
|
47 |
+
|
48 |
+
Raises:
|
49 |
+
RuntimeError: if more than one ID was generated
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
int: the token ID for the given key
|
53 |
+
"""
|
54 |
+
token_ids = tokenizer.encode(key)
|
55 |
+
if len(token_ids) > 1:
|
56 |
+
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
|
57 |
+
return token_ids[0]
|
58 |
+
|
59 |
+
|
60 |
+
class InstructionTextGenerationPipeline(Pipeline):
|
61 |
+
def __init__(
|
62 |
+
self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs
|
63 |
+
):
|
64 |
+
"""Initialize the pipeline
|
65 |
+
|
66 |
+
Args:
|
67 |
+
do_sample (bool, optional): Whether or not to use sampling. Defaults to True.
|
68 |
+
max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.
|
69 |
+
top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with
|
70 |
+
probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92.
|
71 |
+
top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
72 |
+
Defaults to 0.
|
73 |
+
"""
|
74 |
+
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k,
|
75 |
+
**kwargs)
|
76 |
+
|
77 |
+
def _sanitize_parameters(self,
|
78 |
+
return_full_text: bool = None,
|
79 |
+
**generate_kwargs):
|
80 |
+
preprocess_params = {}
|
81 |
+
|
82 |
+
# newer versions of the tokenizer configure the response key as a special token. newer versions still may
|
83 |
+
# append a newline to yield a single token. find whatever token is configured for the response key.
|
84 |
+
tokenizer_response_key = next(
|
85 |
+
(token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None
|
86 |
+
)
|
87 |
+
|
88 |
+
response_key_token_id = None
|
89 |
+
end_key_token_id = None
|
90 |
+
if tokenizer_response_key:
|
91 |
+
try:
|
92 |
+
response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key)
|
93 |
+
end_key_token_id = get_special_token_id(self.tokenizer, END_KEY)
|
94 |
+
|
95 |
+
# Ensure generation stops once it generates "### End"
|
96 |
+
generate_kwargs["eos_token_id"] = end_key_token_id
|
97 |
+
except ValueError:
|
98 |
+
pass
|
99 |
+
|
100 |
+
forward_params = generate_kwargs
|
101 |
+
postprocess_params = {
|
102 |
+
"response_key_token_id": response_key_token_id,
|
103 |
+
"end_key_token_id": end_key_token_id
|
104 |
+
}
|
105 |
+
|
106 |
+
if return_full_text is not None:
|
107 |
+
postprocess_params["return_full_text"] = return_full_text
|
108 |
+
|
109 |
+
return preprocess_params, forward_params, postprocess_params
|
110 |
+
|
111 |
+
def preprocess(self, instruction_text, **generate_kwargs):
|
112 |
+
prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text)
|
113 |
+
inputs = self.tokenizer(
|
114 |
+
prompt_text,
|
115 |
+
return_tensors="pt",
|
116 |
+
)
|
117 |
+
inputs["prompt_text"] = prompt_text
|
118 |
+
inputs["instruction_text"] = instruction_text
|
119 |
+
return inputs
|
120 |
+
|
121 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
122 |
+
input_ids = model_inputs["input_ids"]
|
123 |
+
attention_mask = model_inputs.get("attention_mask", None)
|
124 |
+
|
125 |
+
if input_ids.shape[1] == 0:
|
126 |
+
input_ids = None
|
127 |
+
attention_mask = None
|
128 |
+
in_b = 1
|
129 |
+
else:
|
130 |
+
in_b = input_ids.shape[0]
|
131 |
+
|
132 |
+
generated_sequence = self.model.generate(
|
133 |
+
input_ids=input_ids.to(self.model.device),
|
134 |
+
attention_mask=attention_mask.to(self.model.device) if attention_mask is not None else None,
|
135 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
136 |
+
**generate_kwargs,
|
137 |
+
)
|
138 |
+
|
139 |
+
out_b = generated_sequence.shape[0]
|
140 |
+
if self.framework == "pt":
|
141 |
+
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
|
142 |
+
elif self.framework == "tf":
|
143 |
+
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:]))
|
144 |
+
|
145 |
+
instruction_text = model_inputs.pop("instruction_text")
|
146 |
+
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
|
147 |
+
|
148 |
+
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False):
|
149 |
+
|
150 |
+
generated_sequence = model_outputs["generated_sequence"][0]
|
151 |
+
instruction_text = model_outputs["instruction_text"]
|
152 |
+
|
153 |
+
generated_sequence: List[List[int]] = generated_sequence.numpy().tolist()
|
154 |
+
records = []
|
155 |
+
for sequence in generated_sequence:
|
156 |
+
|
157 |
+
# The response will be set to this variable if we can identify it.
|
158 |
+
decoded = None
|
159 |
+
|
160 |
+
# If we have token IDs for the response and end, then we can find the tokens and only decode between them.
|
161 |
+
if response_key_token_id and end_key_token_id:
|
162 |
+
# Find where "### Response:" is first found in the generated tokens. Considering this is part of the
|
163 |
+
# prompt, we should definitely find it. We will return the tokens found after this token.
|
164 |
+
try:
|
165 |
+
response_pos = sequence.index(response_key_token_id)
|
166 |
+
except ValueError:
|
167 |
+
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
|
168 |
+
response_pos = None
|
169 |
+
|
170 |
+
if response_pos:
|
171 |
+
# Next find where "### End" is located. The model has been trained to end its responses with this
|
172 |
+
# sequence (or actually, the token ID it maps to, since it is a special token). We may not find
|
173 |
+
# this token, as the response could be truncated. If we don't find it then just return everything
|
174 |
+
# to the end. Note that even though we set eos_token_id, we still see the this token at the end.
|
175 |
+
try:
|
176 |
+
end_pos = sequence.index(end_key_token_id)
|
177 |
+
except ValueError:
|
178 |
+
end_pos = None
|
179 |
+
|
180 |
+
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
|
181 |
+
|
182 |
+
if not decoded:
|
183 |
+
# Otherwise we'll decode everything and use a regex to find the response and end.
|
184 |
+
|
185 |
+
fully_decoded = self.tokenizer.decode(sequence)
|
186 |
+
|
187 |
+
# The response appears after "### Response:". The model has been trained to append "### End" at the
|
188 |
+
# end.
|
189 |
+
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
|
190 |
+
|
191 |
+
if m:
|
192 |
+
decoded = m.group(1).strip()
|
193 |
+
else:
|
194 |
+
# The model might not generate the "### End" sequence before reaching the max tokens. In this case,
|
195 |
+
# return everything after "### Response:".
|
196 |
+
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
|
197 |
+
if m:
|
198 |
+
decoded = m.group(1).strip()
|
199 |
+
else:
|
200 |
+
logger.warn(f"Failed to find response in:\n{fully_decoded}")
|
201 |
+
|
202 |
+
# If the full text is requested, then append the decoded text to the original instruction.
|
203 |
+
# This technically isn't the full text, as we format the instruction in the prompt the model has been
|
204 |
+
# trained on, but to the client it will appear to be the full text.
|
205 |
+
if return_full_text:
|
206 |
+
decoded = f"{instruction_text}\n{decoded}"
|
207 |
+
|
208 |
+
rec = {"generated_text": decoded}
|
209 |
+
|
210 |
+
records.append(rec)
|
211 |
+
|
212 |
+
return records
|