metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-sla
results: []
bert-finetuned-sla
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3317
- F1: 0.6207
- Roc Auc: 0.7439
- Accuracy: 0.4902
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
No log | 1.0 | 30 | 0.4847 | 0.1795 | 0.5463 | 0.1176 |
No log | 2.0 | 60 | 0.4364 | 0.3956 | 0.6237 | 0.2549 |
No log | 3.0 | 90 | 0.3896 | 0.4176 | 0.6328 | 0.2941 |
No log | 4.0 | 120 | 0.3633 | 0.5818 | 0.7180 | 0.4314 |
No log | 5.0 | 150 | 0.3497 | 0.6271 | 0.7496 | 0.4706 |
No log | 6.0 | 180 | 0.3317 | 0.6207 | 0.7439 | 0.4902 |
No log | 7.0 | 210 | 0.3300 | 0.6271 | 0.7496 | 0.4706 |
No log | 8.0 | 240 | 0.3191 | 0.6218 | 0.7478 | 0.4706 |
No log | 9.0 | 270 | 0.3223 | 0.6271 | 0.7496 | 0.4706 |
No log | 10.0 | 300 | 0.3189 | 0.6325 | 0.7513 | 0.4706 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2