Commit
·
c92b670
1
Parent(s):
942627f
Update README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# HAR Transformer
|
2 |
Transformer for Human Activity Recognition
|
3 |
|
4 |
Please check our paper [Wearable Sensor-Based Human Activity Recognition with Transformer Model](https://www.mdpi.com/1424-8220/22/5/1911) for more details.
|
5 |
|
6 |
-

|
7 |
-
[](https://github.com/markub3327/HAR-Transformer/issues)
|
8 |
-

|
9 |
-

|
10 |
-
|
11 |
## Papers
|
12 |
* Sikder, N.; Nahid, A.A.; KU-HAR: An open dataset for heterogeneous human activity recognition. Pattern Recognition Letters 2021, 146, 46-54, DOI: 10.1016/j.patrec.2021.02.024.
|
13 |
* Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Advances in neural information processing systems 2017, 30.
|
@@ -22,24 +25,6 @@ The Transformer for Human Activity Recognition operates in sequence-to-sequence
|
|
22 |
|
23 |
[KU-HAR](https://www.kaggle.com/datasets/niloy333/kuhar?resource=download)
|
24 |
|
25 |
-
## Model
|
26 |
-
|
27 |
-
<p align="center">
|
28 |
-
<img src="img/model.png" style="background-color: white;">
|
29 |
-
</p>
|
30 |
-
|
31 |
-
## Results
|
32 |
-
|
33 |
-
<p align="center">
|
34 |
-
<b>Confusion matrix</b>
|
35 |
-
<img src="img/result.png" style="background-color: white;">
|
36 |
-
</p>
|
37 |
-
|
38 |
-
<p align="center">
|
39 |
-
<b>Hyperparameters</b>
|
40 |
-
<img src="img/hyperparams.png">
|
41 |
-
</p>
|
42 |
-
|
43 |
----------------------------------
|
44 |
|
45 |
-
**Frameworks:** TensorFlow, NumPy, Pandas, Scikit-learn, WanDB
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
library_name: keras
|
8 |
+
---
|
9 |
# HAR Transformer
|
10 |
Transformer for Human Activity Recognition
|
11 |
|
12 |
Please check our paper [Wearable Sensor-Based Human Activity Recognition with Transformer Model](https://www.mdpi.com/1424-8220/22/5/1911) for more details.
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
## Papers
|
15 |
* Sikder, N.; Nahid, A.A.; KU-HAR: An open dataset for heterogeneous human activity recognition. Pattern Recognition Letters 2021, 146, 46-54, DOI: 10.1016/j.patrec.2021.02.024.
|
16 |
* Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Advances in neural information processing systems 2017, 30.
|
|
|
25 |
|
26 |
[KU-HAR](https://www.kaggle.com/datasets/niloy333/kuhar?resource=download)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
----------------------------------
|
29 |
|
30 |
+
**Frameworks:** TensorFlow, NumPy, Pandas, Scikit-learn, WanDB
|