|
--- |
|
language: |
|
- sv-SE |
|
license: cc0-1.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- model_for_talk |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
- sv |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: XLS-R-300M - Swedish |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_8_0 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: sv-SE |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 8.72 |
|
- name: Test CER |
|
type: cer |
|
value: 3.05 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: speech-recognition-community-v2/eval_data |
|
type: speech-recognition-community-v2/eval_data |
|
args: sv |
|
metrics: |
|
- name: Validation WER |
|
type: wer |
|
value: 19.67 |
|
- name: Validation CER |
|
type: cer |
|
value: 8.94 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: speech-recognition-community-v2/eval_data |
|
type: speech-recognition-community-v2/eval_data |
|
args: sv |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 15.94 |
|
- name: Test CER |
|
type: cer |
|
value: 7.71 |
|
widget: |
|
- example_title: Swedish |
|
src: https://cdn-media.huggingface.co/speech_samples/cv_swedish_1.mp3 |
|
--- |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1595 |
|
- Wer: 0.1200 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00025 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.25 |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.0418 | 5.49 | 500 | 3.0176 | 1.0 | |
|
| 1.1819 | 10.98 | 1000 | 0.2562 | 0.2168 | |
|
| 1.0032 | 16.48 | 1500 | 0.1746 | 0.1546 | |
|
| 0.9077 | 21.97 | 2000 | 0.1600 | 0.1339 | |
|
| 0.8687 | 27.47 | 2500 | 0.1647 | 0.1378 | |
|
| 0.8081 | 32.96 | 3000 | 0.1608 | 0.1353 | |
|
| 0.7923 | 38.46 | 3500 | 0.1534 | 0.1277 | |
|
| 0.7349 | 43.95 | 4000 | 0.1546 | 0.1303 | |
|
| 0.7199 | 49.45 | 4500 | 0.1617 | 0.1277 | |
|
| 0.7028 | 54.94 | 5000 | 0.1572 | 0.1287 | |
|
| 0.6912 | 60.44 | 5500 | 0.1560 | 0.1249 | |
|
| 0.6492 | 65.93 | 6000 | 0.1542 | 0.1260 | |
|
| 0.6407 | 71.43 | 6500 | 0.1605 | 0.1240 | |
|
| 0.6222 | 76.92 | 7000 | 0.1577 | 0.1219 | |
|
| 0.6039 | 82.42 | 7500 | 0.1645 | 0.1249 | |
|
| 0.5928 | 87.91 | 8000 | 0.1590 | 0.1214 | |
|
| 0.6022 | 93.4 | 8500 | 0.1597 | 0.1213 | |
|
| 0.5814 | 98.9 | 9000 | 0.1599 | 0.1199 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|