metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MiniLM-evidence-types
results: []
MiniLM-evidence-types
This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3612
- Macro f1: 0.1900
- Weighted f1: 0.5901
- Accuracy: 0.6499
- Balanced accuracy: 0.2161
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
---|---|---|---|---|---|---|---|
1.5 | 1.0 | 125 | 1.3612 | 0.1900 | 0.5901 | 0.6499 | 0.2161 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1