marieke93's picture
update model card README.md
a484d5b
|
raw
history blame
3.64 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: MiniLM-evidence-types
    results: []

MiniLM-evidence-types

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6603
  • Macro f1: 0.4329
  • Weighted f1: 0.7053
  • Accuracy: 0.7154
  • Balanced accuracy: 0.4114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Macro f1 Weighted f1 Accuracy Balanced accuracy
1.3633 1.0 125 1.1325 0.3442 0.6470 0.6872 0.3862
1.0162 2.0 250 0.9858 0.3062 0.6889 0.7131 0.3135
0.868 3.0 375 0.9587 0.4091 0.7071 0.7207 0.3993
0.75 4.0 500 0.9983 0.4105 0.7080 0.7192 0.4039
0.6317 5.0 625 1.0197 0.4095 0.6941 0.6994 0.4093
0.5253 6.0 750 1.0760 0.4303 0.7073 0.7123 0.4223
0.4615 7.0 875 1.1371 0.4328 0.7040 0.7169 0.4096
0.3984 8.0 1000 1.1649 0.4516 0.6997 0.7002 0.4678
0.3332 9.0 1125 1.2009 0.4364 0.6994 0.7040 0.4243
0.2996 10.0 1250 1.2760 0.4336 0.7095 0.7192 0.4162
0.255 11.0 1375 1.3266 0.4353 0.6914 0.6918 0.4402
0.2318 12.0 1500 1.3591 0.4322 0.7011 0.7116 0.4101
0.2163 13.0 1625 1.4554 0.4226 0.7080 0.7237 0.4029
0.1837 14.0 1750 1.4363 0.4385 0.6938 0.6963 0.4250
0.1735 15.0 1875 1.5356 0.4363 0.7118 0.7230 0.4098
0.1526 16.0 2000 1.5731 0.4370 0.7073 0.7169 0.4181
0.1288 17.0 2125 1.6258 0.4406 0.7123 0.7245 0.4151
0.1321 18.0 2250 1.6590 0.4364 0.7081 0.7184 0.4148
0.114 19.0 2375 1.6598 0.4324 0.7074 0.7192 0.4081
0.1063 20.0 2500 1.6603 0.4329 0.7053 0.7154 0.4114

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1