ensemble-tts-annotation / scripts /data /create_synthetic_test_data.py
marcosremar
πŸš€ SkyPilot Multi-Cloud GPU Support + Synthetic Data Generation
13e402e
"""
Create synthetic audio samples for testing fine-tuning and annotation.
This script generates synthetic audio samples with different characteristics
to simulate emotional speech for testing purposes before real datasets are available.
"""
import numpy as np
import soundfile as sf
from pathlib import Path
import logging
from typing import Dict, List
import librosa
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SyntheticAudioGenerator:
"""Generate synthetic audio samples with emotion-like characteristics."""
def __init__(self, sample_rate: int = 16000):
self.sample_rate = sample_rate
def generate_base_tone(self, duration: float, frequency: float) -> np.ndarray:
"""Generate a base tone with given frequency."""
t = np.linspace(0, duration, int(duration * self.sample_rate))
tone = np.sin(2 * np.pi * frequency * t)
return tone
def add_harmonics(self, tone: np.ndarray, frequencies: List[float],
amplitudes: List[float]) -> np.ndarray:
"""Add harmonic frequencies to simulate voice complexity."""
duration = len(tone) / self.sample_rate
t = np.linspace(0, duration, len(tone))
for freq, amp in zip(frequencies, amplitudes):
harmonic = amp * np.sin(2 * np.pi * freq * t)
tone = tone + harmonic
return tone
def apply_envelope(self, audio: np.ndarray, attack: float = 0.1,
decay: float = 0.1, sustain: float = 0.7,
release: float = 0.2) -> np.ndarray:
"""Apply ADSR envelope to audio."""
n_samples = len(audio)
envelope = np.ones(n_samples)
# Attack
attack_samples = int(attack * n_samples)
envelope[:attack_samples] = np.linspace(0, 1, attack_samples)
# Decay
decay_samples = int(decay * n_samples)
decay_end = attack_samples + decay_samples
envelope[attack_samples:decay_end] = np.linspace(1, sustain, decay_samples)
# Sustain (already at sustain level)
sustain_end = n_samples - int(release * n_samples)
envelope[decay_end:sustain_end] = sustain
# Release
envelope[sustain_end:] = np.linspace(sustain, 0, n_samples - sustain_end)
return audio * envelope
def generate_neutral(self, duration: float = 3.0) -> np.ndarray:
"""
Generate neutral emotion audio.
Characteristics: Medium pitch, steady rhythm, minimal variation.
"""
# Base frequency: medium pitch (male: ~120Hz, female: ~220Hz)
base_freq = 150.0
tone = self.generate_base_tone(duration, base_freq)
# Add subtle harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4]
amplitudes = [0.3, 0.15, 0.08]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Steady envelope
tone = self.apply_envelope(tone, attack=0.1, decay=0.05,
sustain=0.8, release=0.15)
# Normalize
tone = tone / np.max(np.abs(tone)) * 0.7
return tone.astype(np.float32)
def generate_happy(self, duration: float = 3.0) -> np.ndarray:
"""
Generate happy emotion audio.
Characteristics: Higher pitch, faster rhythm, more energy.
"""
# Higher pitch
base_freq = 200.0
tone = self.generate_base_tone(duration, base_freq)
# More pronounced harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4, base_freq * 5]
amplitudes = [0.4, 0.25, 0.15, 0.1]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add vibrato (pitch modulation)
t = np.linspace(0, duration, len(tone))
vibrato = 1 + 0.02 * np.sin(2 * np.pi * 5 * t) # 5Hz vibrato
tone = tone * vibrato
# Energetic envelope
tone = self.apply_envelope(tone, attack=0.05, decay=0.05,
sustain=0.9, release=0.1)
# Higher energy
tone = tone / np.max(np.abs(tone)) * 0.85
return tone.astype(np.float32)
def generate_sad(self, duration: float = 3.0) -> np.ndarray:
"""
Generate sad emotion audio.
Characteristics: Lower pitch, slower rhythm, less energy.
"""
# Lower pitch
base_freq = 100.0
tone = self.generate_base_tone(duration, base_freq)
# Fewer harmonics (less bright)
harmonics = [base_freq * 2, base_freq * 3]
amplitudes = [0.25, 0.12]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add tremolo (amplitude modulation)
t = np.linspace(0, duration, len(tone))
tremolo = 1 - 0.05 * np.sin(2 * np.pi * 3 * t) # 3Hz tremolo
tone = tone * tremolo
# Slower envelope
tone = self.apply_envelope(tone, attack=0.15, decay=0.1,
sustain=0.6, release=0.25)
# Lower energy
tone = tone / np.max(np.abs(tone)) * 0.6
return tone.astype(np.float32)
def generate_angry(self, duration: float = 3.0) -> np.ndarray:
"""
Generate angry emotion audio.
Characteristics: Variable pitch, harsh harmonics, high energy.
"""
# Medium-high pitch with variations
base_freq = 180.0
tone = self.generate_base_tone(duration, base_freq)
# Harsh harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4, base_freq * 6]
amplitudes = [0.5, 0.3, 0.2, 0.15]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add roughness (noise)
noise = np.random.randn(len(tone)) * 0.1
tone = tone + noise
# Aggressive envelope
tone = self.apply_envelope(tone, attack=0.02, decay=0.05,
sustain=0.95, release=0.08)
# High energy
tone = tone / np.max(np.abs(tone)) * 0.9
return tone.astype(np.float32)
def generate_fearful(self, duration: float = 3.0) -> np.ndarray:
"""
Generate fearful emotion audio.
Characteristics: Variable pitch, trembling, high frequency.
"""
# Higher pitch with instability
base_freq = 220.0
tone = self.generate_base_tone(duration, base_freq)
# Unstable harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 5]
amplitudes = [0.35, 0.2, 0.15]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add trembling (fast amplitude modulation)
t = np.linspace(0, duration, len(tone))
trembling = 1 - 0.08 * np.sin(2 * np.pi * 8 * t) # 8Hz trembling
tone = tone * trembling
# Unstable envelope
tone = self.apply_envelope(tone, attack=0.08, decay=0.12,
sustain=0.7, release=0.15)
tone = tone / np.max(np.abs(tone)) * 0.75
return tone.astype(np.float32)
def generate_disgusted(self, duration: float = 3.0) -> np.ndarray:
"""
Generate disgusted emotion audio.
Characteristics: Lower pitch, nasal quality, reduced energy.
"""
# Lower-medium pitch
base_freq = 130.0
tone = self.generate_base_tone(duration, base_freq)
# Nasal harmonics (odd harmonics emphasized)
harmonics = [base_freq * 3, base_freq * 5, base_freq * 7]
amplitudes = [0.4, 0.25, 0.15]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Add slight roughness
noise = np.random.randn(len(tone)) * 0.05
tone = tone + noise
# Reduced energy envelope
tone = self.apply_envelope(tone, attack=0.12, decay=0.1,
sustain=0.65, release=0.2)
tone = tone / np.max(np.abs(tone)) * 0.65
return tone.astype(np.float32)
def generate_surprised(self, duration: float = 3.0) -> np.ndarray:
"""
Generate surprised emotion audio.
Characteristics: Sudden onset, high pitch, short duration tendency.
"""
# High pitch
base_freq = 250.0
tone = self.generate_base_tone(duration, base_freq)
# Bright harmonics
harmonics = [base_freq * 2, base_freq * 3, base_freq * 4]
amplitudes = [0.45, 0.3, 0.2]
tone = self.add_harmonics(tone, harmonics, amplitudes)
# Very fast attack envelope
tone = self.apply_envelope(tone, attack=0.01, decay=0.15,
sustain=0.8, release=0.12)
tone = tone / np.max(np.abs(tone)) * 0.8
return tone.astype(np.float32)
def create_test_dataset(output_dir: Path, samples_per_emotion: int = 10):
"""
Create a synthetic test dataset with multiple samples per emotion.
Args:
output_dir: Directory to save audio files
samples_per_emotion: Number of samples to generate per emotion
"""
logger.info("🎡 Creating synthetic test dataset...")
logger.info(f"Output: {output_dir}")
logger.info(f"Samples per emotion: {samples_per_emotion}")
output_dir.mkdir(parents=True, exist_ok=True)
generator = SyntheticAudioGenerator(sample_rate=16000)
emotions = {
"neutral": generator.generate_neutral,
"happy": generator.generate_happy,
"sad": generator.generate_sad,
"angry": generator.generate_angry,
"fearful": generator.generate_fearful,
"disgusted": generator.generate_disgusted,
"surprised": generator.generate_surprised
}
total_files = 0
for emotion, generate_fn in emotions.items():
emotion_dir = output_dir / emotion
emotion_dir.mkdir(exist_ok=True)
logger.info(f"\n Generating {emotion}...")
for i in range(samples_per_emotion):
# Vary duration slightly
duration = 2.5 + np.random.rand() * 1.0 # 2.5 to 3.5 seconds
audio = generate_fn(duration)
filename = emotion_dir / f"{emotion}_{i:03d}.wav"
sf.write(filename, audio, 16000)
total_files += 1
logger.info(f" βœ“ {samples_per_emotion} files created")
logger.info(f"\nβœ… Total: {total_files} synthetic audio files created")
logger.info(f"πŸ“ Location: {output_dir}")
# Create metadata file
metadata = {
"dataset_name": "synthetic_emotions_test",
"total_samples": total_files,
"samples_per_emotion": samples_per_emotion,
"emotions": list(emotions.keys()),
"sample_rate": 16000,
"description": "Synthetic audio samples for testing emotion recognition"
}
import json
with open(output_dir / "metadata.json", "w") as f:
json.dump(metadata, f, indent=2)
logger.info(f"πŸ“„ Metadata saved to: {output_dir / 'metadata.json'}")
return output_dir
def main():
import argparse
parser = argparse.ArgumentParser(description="Create synthetic test audio data")
parser.add_argument("--output", type=str, default="data/raw/synthetic/",
help="Output directory")
parser.add_argument("--samples", type=int, default=10,
help="Samples per emotion (default: 10)")
args = parser.parse_args()
output_dir = Path(args.output)
create_test_dataset(output_dir, args.samples)
logger.info("\n" + "="*60)
logger.info("Next steps:")
logger.info("="*60)
logger.info("\n1. Prepare dataset for training:")
logger.info(f"\n python scripts/data/download_ptbr_datasets.py \\")
logger.info(f" --prepare-local {output_dir}")
logger.info("\n2. Fine-tune with synthetic data:")
logger.info("\n python scripts/training/finetune_emotion2vec.py \\")
logger.info(" --dataset data/prepared/synthetic_prepared \\")
logger.info(" --epochs 5 \\")
logger.info(" --device cpu")
logger.info("\nπŸ’‘ Note: This is synthetic data for testing only.")
logger.info(" Use real datasets (VERBO, emoUERJ) for production fine-tuning.")
if __name__ == "__main__":
main()