manucos's picture
End of training
75d02ca verified
metadata
license: apache-2.0
base_model: BSC-LT/roberta-base-biomedical-clinical-es
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-biomedical-clinical-es-ner
    results: []

roberta-base-biomedical-clinical-es-ner

This model is a fine-tuned version of BSC-LT/roberta-base-biomedical-clinical-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3813
  • Precision: 0.8687
  • Recall: 0.8919
  • F1: 0.8801
  • Accuracy: 0.9374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 280 0.3201 0.7961 0.8385 0.8167 0.9130
0.5051 2.0 560 0.2833 0.8245 0.8770 0.8500 0.9282
0.5051 3.0 840 0.2717 0.8459 0.8622 0.8540 0.9262
0.1434 4.0 1120 0.2782 0.8477 0.8904 0.8685 0.9324
0.1434 5.0 1400 0.3119 0.8525 0.8993 0.8753 0.9355
0.0804 6.0 1680 0.3146 0.8639 0.8933 0.8784 0.9366
0.0804 7.0 1960 0.3211 0.8637 0.8919 0.8776 0.9346
0.0475 8.0 2240 0.3523 0.8707 0.8978 0.8840 0.9372
0.0347 9.0 2520 0.3651 0.8434 0.8859 0.8642 0.9335
0.0347 10.0 2800 0.3663 0.8706 0.8874 0.8789 0.9360
0.0241 11.0 3080 0.3756 0.8680 0.8963 0.8819 0.9372
0.0241 12.0 3360 0.3692 0.86 0.8919 0.8756 0.9369
0.0201 13.0 3640 0.3782 0.8631 0.8874 0.8751 0.9360
0.0201 14.0 3920 0.3820 0.8698 0.8904 0.8799 0.9374
0.0172 15.0 4200 0.3813 0.8687 0.8919 0.8801 0.9374

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1