metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Thank you for your email. Please go ahead and issue. Please invoice in KES
- text: >-
Hi, We are missing some invoices, can you please provide it. 02 - 12 -
2020 AGENT FEE 8900784339018 $21.00 02 - 19 - 2020 AGENT FEE 0017417554160
$22.00 02 - 19 - 2020 AGENT FEE 0017417554143 $22.00 02 - 19 - 2020 AGENT
FEE 8900783383420 $21.00
- text: >-
We need your assistance with the payment for the recent office supplies
order. Let us know once it's done.
- text: >-
I have reported this in November and not only was the trip supposed to be
cancelled and credited I was double billed and the billing has not been
corrected. The total credit should be $667.20. Please confirm this will be
done.
- text: >-
The invoice for the travel arrangements needs to be settled. Kindly
provide payment confirmation.
inference: true
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 14 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mann2107/BCMPIIRAB_MiniLM_ALLNew")
# Run inference
preds = model("Thank you for your email. Please go ahead and issue. Please invoice in KES")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.6577 | 136 |
Label | Training Sample Count |
---|---|
0 | 24 |
1 | 24 |
2 | 24 |
3 | 24 |
4 | 24 |
5 | 24 |
6 | 24 |
7 | 24 |
8 | 24 |
9 | 24 |
10 | 24 |
11 | 24 |
12 | 24 |
13 | 24 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 99
- body_learning_rate: (0.0002733656643765287, 0.0002733656643765287)
- head_learning_rate: 2.7029049129688732e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- max_length: 512
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2546 | - |
0.0120 | 50 | 0.1667 | - |
0.0241 | 100 | 0.1165 | - |
0.0361 | 150 | 0.0799 | - |
0.0481 | 200 | 0.0212 | - |
0.0601 | 250 | 0.0188 | - |
0.0722 | 300 | 0.0531 | - |
0.0842 | 350 | 0.0273 | - |
0.0962 | 400 | 0.0111 | - |
0.1082 | 450 | 0.0203 | - |
0.1203 | 500 | 0.0397 | - |
0.1323 | 550 | 0.0164 | - |
0.1443 | 600 | 0.0045 | - |
0.1563 | 650 | 0.0032 | - |
0.1684 | 700 | 0.001 | - |
0.1804 | 750 | 0.0011 | - |
0.1924 | 800 | 0.0004 | - |
0.2044 | 850 | 0.0009 | - |
0.2165 | 900 | 0.0006 | - |
0.2285 | 950 | 0.0008 | - |
0.2405 | 1000 | 0.0004 | - |
0.2525 | 1050 | 0.0008 | - |
0.2646 | 1100 | 0.0005 | - |
0.2766 | 1150 | 0.0006 | - |
0.2886 | 1200 | 0.0007 | - |
0.3006 | 1250 | 0.0043 | - |
0.3127 | 1300 | 0.0004 | - |
0.3247 | 1350 | 0.0005 | - |
0.3367 | 1400 | 0.0005 | - |
0.3487 | 1450 | 0.0004 | - |
0.3608 | 1500 | 0.0004 | - |
0.3728 | 1550 | 0.0005 | - |
0.3848 | 1600 | 0.0007 | - |
0.3968 | 1650 | 0.0006 | - |
0.4089 | 1700 | 0.0002 | - |
0.4209 | 1750 | 0.0006 | - |
0.4329 | 1800 | 0.0008 | - |
0.4449 | 1850 | 0.0003 | - |
0.4570 | 1900 | 0.0005 | - |
0.4690 | 1950 | 0.0003 | - |
0.4810 | 2000 | 0.0003 | - |
0.4930 | 2050 | 0.0003 | - |
0.5051 | 2100 | 0.0006 | - |
0.5171 | 2150 | 0.0003 | - |
0.5291 | 2200 | 0.0002 | - |
0.5411 | 2250 | 0.0002 | - |
0.5532 | 2300 | 0.0002 | - |
0.5652 | 2350 | 0.0004 | - |
0.5772 | 2400 | 0.0003 | - |
0.5892 | 2450 | 0.0003 | - |
0.6013 | 2500 | 0.0002 | - |
0.6133 | 2550 | 0.0002 | - |
0.6253 | 2600 | 0.0013 | - |
0.6373 | 2650 | 0.0002 | - |
0.6494 | 2700 | 0.0007 | - |
0.6614 | 2750 | 0.0004 | - |
0.6734 | 2800 | 0.0007 | - |
0.6854 | 2850 | 0.0018 | - |
0.6975 | 2900 | 0.0002 | - |
0.7095 | 2950 | 0.0003 | - |
0.7215 | 3000 | 0.0006 | - |
0.7335 | 3050 | 0.0003 | - |
0.7456 | 3100 | 0.0002 | - |
0.7576 | 3150 | 0.0002 | - |
0.7696 | 3200 | 0.0002 | - |
0.7816 | 3250 | 0.0002 | - |
0.7937 | 3300 | 0.0002 | - |
0.8057 | 3350 | 0.0001 | - |
0.8177 | 3400 | 0.0003 | - |
0.8297 | 3450 | 0.0002 | - |
0.8418 | 3500 | 0.0002 | - |
0.8538 | 3550 | 0.0002 | - |
0.8658 | 3600 | 0.0002 | - |
0.8778 | 3650 | 0.0002 | - |
0.8899 | 3700 | 0.0002 | - |
0.9019 | 3750 | 0.0005 | - |
0.9139 | 3800 | 0.0002 | - |
0.9259 | 3850 | 0.0001 | - |
0.9380 | 3900 | 0.0004 | - |
0.9500 | 3950 | 0.0001 | - |
0.9620 | 4000 | 0.0005 | - |
0.9740 | 4050 | 0.0002 | - |
0.9861 | 4100 | 0.0002 | - |
0.9981 | 4150 | 0.0001 | - |
1.0 | 4158 | - | 0.0302 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}