|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from torch.ao.quantization import quantize_dynamic |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
import torch |
|
import torch._dynamo |
|
import gc |
|
from PIL import Image as img |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
import time |
|
from diffusers import FluxTransformer2DModel, DiffusionPipeline |
|
|
|
import os |
|
|
|
from torch.ao.quantization import prepare, convert |
|
from torch.ao.quantization import QConfig |
|
from torch.ao.quantization.observer import MinMaxObserver |
|
from torch.ao.quantization.quantize import quantize_dynamic |
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:False,garbage_collection_threshold:0.01" |
|
Pipeline = None |
|
|
|
ckpt_id = "black-forest-labs/FLUX.1-schnell" |
|
def empty_cache(): |
|
start = time.time() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
print(f"Flush took: {time.time() - start}") |
|
|
|
def load_pipeline() -> Pipeline: |
|
empty_cache() |
|
dtype, device = torch.bfloat16, "cuda" |
|
|
|
text_encoder_2 = T5EncoderModel.from_pretrained( |
|
"city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16 |
|
) |
|
vae=AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype) |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
ckpt_id, |
|
vae=vae, |
|
text_encoder_2 = text_encoder_2, |
|
torch_dtype=dtype, |
|
) |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.cuda.set_per_process_memory_fraction(0.99) |
|
pipeline.text_encoder.to(memory_format=torch.channels_last) |
|
|
|
|
|
|
|
|
|
|
|
float8_observer = MinMaxObserver.with_args(dtype=torch.qint8) |
|
custom_qconfig = QConfig( |
|
activation=float8_observer, |
|
weight=float8_observer |
|
) |
|
qconfig_spec = { |
|
"linear": custom_qconfig, |
|
"linear_1": custom_qconfig, |
|
"linear_2": custom_qconfig, |
|
"to_q": custom_qconfig, |
|
"to_k": custom_qconfig, |
|
"to_v": custom_qconfig, |
|
"add_k_proj": custom_qconfig, |
|
"add_v_proj": custom_qconfig, |
|
"add_q_proj": custom_qconfig, |
|
"proj": custom_qconfig, |
|
"proj_mlp": custom_qconfig, |
|
"proj_out": custom_qconfig |
|
} |
|
|
|
|
|
pipeline.transformer = quantize_dynamic( |
|
pipeline.transformer, |
|
qconfig_spec=qconfig_spec, |
|
dtype=torch.qint8, |
|
inplace=True, |
|
) |
|
|
|
pipeline.vae.to(memory_format=torch.channels_last) |
|
pipeline.vae = torch.compile(pipeline.vae) |
|
|
|
pipeline._exclude_from_cpu_offload = ["vae"] |
|
|
|
def custom_cpu_offload(model, device, offload_buffers=True): |
|
state_dict = model.state_dict() |
|
filtered_state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)} |
|
for name, param in filtered_state_dict.items(): |
|
param.data = param.to(device) |
|
|
|
custom_cpu_offload(pipeline.text_encoder, "cpu") |
|
custom_cpu_offload(pipeline.text_encoder_2, "cpu") |
|
custom_cpu_offload(pipeline.transformer, "cpu") |
|
|
|
for _ in range(2): |
|
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
|
|
return pipeline |
|
|
|
|
|
@torch.inference_mode() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: |
|
torch.cuda.reset_peak_memory_stats() |
|
generator = Generator("cuda").manual_seed(request.seed) |
|
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] |
|
return(image) |
|
|