from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from torch.ao.quantization import quantize_dynamic from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel import torch import torch._dynamo import gc from PIL import Image as img from PIL.Image import Image from pipelines.models import TextToImageRequest from torch import Generator import time from diffusers import FluxTransformer2DModel, DiffusionPipeline # from torchao.quantization import quantize_,int8_weight_only import os from torch.ao.quantization import prepare, convert from torch.ao.quantization import QConfig from torch.ao.quantization.observer import MinMaxObserver from torch.ao.quantization.quantize import quantize_dynamic os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:False,garbage_collection_threshold:0.01" Pipeline = None ckpt_id = "black-forest-labs/FLUX.1-schnell" def empty_cache(): start = time.time() gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() print(f"Flush took: {time.time() - start}") def load_pipeline() -> Pipeline: empty_cache() dtype, device = torch.bfloat16, "cuda" text_encoder_2 = T5EncoderModel.from_pretrained( "city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16 ) vae=AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype) pipeline = DiffusionPipeline.from_pretrained( ckpt_id, vae=vae, text_encoder_2 = text_encoder_2, torch_dtype=dtype, ) torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True torch.cuda.set_per_process_memory_fraction(0.99) pipeline.text_encoder.to(memory_format=torch.channels_last) # pipeline.transformer.to(memory_format=torch.channels_last) # quantize_dynamic(pipeline.transformer, dtype=torch.float8_e5m2fnuz, inplace=True) # Define a custom qconfig for float8_e5m2fnuz float8_observer = MinMaxObserver.with_args(dtype=torch.qint8) custom_qconfig = QConfig( activation=float8_observer, weight=float8_observer ) qconfig_spec = { "linear": custom_qconfig, "linear_1": custom_qconfig, "linear_2": custom_qconfig, "to_q": custom_qconfig, "to_k": custom_qconfig, "to_v": custom_qconfig, "add_k_proj": custom_qconfig, "add_v_proj": custom_qconfig, "add_q_proj": custom_qconfig, "proj": custom_qconfig, "proj_mlp": custom_qconfig, "proj_out": custom_qconfig } # Apply dynamic quantization to Transformer pipeline.transformer = quantize_dynamic( pipeline.transformer, qconfig_spec=qconfig_spec, # Apply qconfig only to transformer layers dtype=torch.qint8, #torch.float8_e5m2fnuz inplace=True, ) pipeline.vae.to(memory_format=torch.channels_last) pipeline.vae = torch.compile(pipeline.vae) pipeline._exclude_from_cpu_offload = ["vae"] # pipeline.enable_sequential_cpu_offload() def custom_cpu_offload(model, device, offload_buffers=True): state_dict = model.state_dict() filtered_state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)} for name, param in filtered_state_dict.items(): param.data = param.to(device) custom_cpu_offload(pipeline.text_encoder, "cpu") custom_cpu_offload(pipeline.text_encoder_2, "cpu") custom_cpu_offload(pipeline.transformer, "cpu") for _ in range(2): pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) return pipeline @torch.inference_mode() def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: torch.cuda.reset_peak_memory_stats() generator = Generator("cuda").manual_seed(request.seed) image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] return(image)