metadata
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: CommitPredictor
results: []
CommitPredictor
This model is a fine-tuned version of microsoft/codebert-base-mlm on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5888
- Accuracy: 0.8783
- F1: 0.8783
- Bleu4: 0.8598
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 42
- eval_batch_size: 42
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 126
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
---|---|---|---|---|---|---|
No log | 1.0 | 236 | 0.8706 | 0.8253 | 0.8253 | 0.7764 |
No log | 2.0 | 472 | 0.7296 | 0.8503 | 0.8503 | 0.8287 |
1.0825 | 3.0 | 708 | 0.6826 | 0.8594 | 0.8594 | 0.8123 |
1.0825 | 4.0 | 944 | 0.6655 | 0.8645 | 0.8645 | 0.8480 |
0.755 | 5.0 | 1180 | 0.6317 | 0.8696 | 0.8696 | 0.9028 |
0.755 | 6.0 | 1416 | 0.6333 | 0.8699 | 0.8699 | 0.8870 |
0.6948 | 7.0 | 1652 | 0.6147 | 0.8738 | 0.8738 | 0.9187 |
0.6948 | 8.0 | 1888 | 0.6110 | 0.8738 | 0.8738 | 0.8080 |
0.6633 | 9.0 | 2124 | 0.5987 | 0.8770 | 0.8770 | 0.8903 |
0.6633 | 10.0 | 2360 | 0.5888 | 0.8783 | 0.8783 | 0.8598 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2