mamiksik commited on
Commit
8991511
1 Parent(s): 42b5a2f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -13
README.md CHANGED
@@ -16,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.0001
20
- - Accuracy: 0.0211
21
- - F1: 0.0211
22
- - Bleu4: 0.1608
23
 
24
  ## Model description
25
 
@@ -39,21 +39,52 @@ More information needed
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 2e-05
42
- - train_batch_size: 16
43
- - eval_batch_size: 16
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
- - num_epochs: 100
48
 
49
  ### Training results
50
 
51
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
52
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
53
- | 0.0908 | 1.0 | 1373 | 0.0184 | 0.0257 | 0.0257 | 0.1931 |
54
- | 0.0169 | 2.0 | 2746 | 0.0007 | 0.0207 | 0.0207 | 0.1567 |
55
- | 0.0033 | 3.0 | 4119 | 0.0058 | 0.0138 | 0.0138 | 0.0759 |
56
- | 0.0025 | 4.0 | 5492 | 0.0001 | 0.0211 | 0.0211 | 0.1608 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
 
59
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 2.5831
20
+ - Accuracy: 0.0144
21
+ - F1: 0.0144
22
+ - Bleu4: 0.0421
23
 
24
  ## Model description
25
 
 
39
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 2e-05
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
+ - num_epochs: 200
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|
53
+ | 3.6734 | 1.0 | 1673 | 3.6884 | 0.0159 | 0.0159 | 0.0131 |
54
+ | 2.8139 | 2.0 | 3346 | 3.2517 | 0.0164 | 0.0164 | 0.0192 |
55
+ | 2.4176 | 3.0 | 5019 | 3.0747 | 0.0178 | 0.0178 | 0.0332 |
56
+ | 2.2785 | 4.0 | 6692 | 2.9695 | 0.0174 | 0.0174 | 0.0347 |
57
+ | 2.1557 | 5.0 | 8365 | 2.8886 | 0.0171 | 0.0171 | 0.0377 |
58
+ | 2.0357 | 6.0 | 10038 | 2.8313 | 0.0158 | 0.0158 | 0.0394 |
59
+ | 1.9615 | 7.0 | 11711 | 2.7865 | 0.0158 | 0.0158 | 0.0393 |
60
+ | 1.8982 | 8.0 | 13384 | 2.7498 | 0.0147 | 0.0147 | 0.0399 |
61
+ | 1.8233 | 9.0 | 15057 | 2.7195 | 0.0149 | 0.0149 | 0.0430 |
62
+ | 1.7866 | 10.0 | 16730 | 2.6925 | 0.0157 | 0.0157 | 0.0485 |
63
+ | 1.7237 | 11.0 | 18403 | 2.6745 | 0.0146 | 0.0146 | 0.0419 |
64
+ | 1.6757 | 12.0 | 20076 | 2.6616 | 0.0146 | 0.0146 | 0.0403 |
65
+ | 1.6452 | 13.0 | 21749 | 2.6377 | 0.0147 | 0.0147 | 0.0403 |
66
+ | 1.6036 | 14.0 | 23422 | 2.6216 | 0.0145 | 0.0145 | 0.0397 |
67
+ | 1.5818 | 15.0 | 25095 | 2.6169 | 0.0150 | 0.0150 | 0.0413 |
68
+ | 1.5389 | 16.0 | 26768 | 2.6047 | 0.0146 | 0.0146 | 0.0420 |
69
+ | 1.5131 | 17.0 | 28441 | 2.5940 | 0.0153 | 0.0153 | 0.0433 |
70
+ | 1.4822 | 18.0 | 30114 | 2.5899 | 0.0145 | 0.0145 | 0.0404 |
71
+ | 1.4461 | 19.0 | 31787 | 2.5812 | 0.0150 | 0.0150 | 0.0423 |
72
+ | 1.4149 | 20.0 | 33460 | 2.5841 | 0.0148 | 0.0148 | 0.0418 |
73
+ | 1.3933 | 21.0 | 35133 | 2.5783 | 0.0139 | 0.0139 | 0.0386 |
74
+ | 1.3752 | 22.0 | 36806 | 2.5730 | 0.0151 | 0.0151 | 0.0444 |
75
+ | 1.3412 | 23.0 | 38479 | 2.5709 | 0.0149 | 0.0149 | 0.0419 |
76
+ | 1.3307 | 24.0 | 40152 | 2.5699 | 0.0143 | 0.0143 | 0.0424 |
77
+ | 1.2909 | 25.0 | 41825 | 2.5648 | 0.0144 | 0.0144 | 0.0416 |
78
+ | 1.2679 | 26.0 | 43498 | 2.5615 | 0.0145 | 0.0145 | 0.0420 |
79
+ | 1.2603 | 27.0 | 45171 | 2.5626 | 0.0148 | 0.0148 | 0.0433 |
80
+ | 1.2203 | 28.0 | 46844 | 2.5670 | 0.0148 | 0.0148 | 0.0410 |
81
+ | 1.2134 | 29.0 | 48517 | 2.5536 | 0.0147 | 0.0147 | 0.0422 |
82
+ | 1.1907 | 30.0 | 50190 | 2.5701 | 0.0139 | 0.0139 | 0.0404 |
83
+ | 1.1702 | 31.0 | 51863 | 2.5722 | 0.0143 | 0.0143 | 0.0424 |
84
+ | 1.1555 | 32.0 | 53536 | 2.5679 | 0.0144 | 0.0144 | 0.0434 |
85
+ | 1.1371 | 33.0 | 55209 | 2.5694 | 0.0146 | 0.0146 | 0.0431 |
86
+ | 1.1189 | 34.0 | 56882 | 2.5692 | 0.0141 | 0.0141 | 0.0422 |
87
+ | 1.0989 | 35.0 | 58555 | 2.5831 | 0.0144 | 0.0144 | 0.0421 |
88
 
89
 
90
  ### Framework versions