malhajar commited on
Commit
4fbba18
1 Parent(s): ca94002

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - Medicine
6
+ datasets:
7
+ - yahma/alpaca-cleaned
8
+ license: llama2
9
+ base_model: epfl-llm/meditron-70b
10
+ ---
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+ meditron-7b-chat is a finetuned version of [`epfl-llm/meditron-70b`](https://huggingface.co/epfl-llm/meditron-70b) using SFT Training on the Alpaca Dataset.
15
+ This model can answer information about different excplicit ideas in medicine (see [`epfl-llm/meditron-70b`](https://huggingface.co/epfl-llm/meditron-70b) for more info)
16
+
17
+ ### Model Description
18
+
19
+ - **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/)
20
+ - **Language(s) (NLP):** English
21
+ - **Finetuned from model:** [`epfl-llm/meditron-7b`](https://huggingface.co/epfl-llm/meditron-70b)
22
+
23
+ ### Prompt Template
24
+ ```
25
+ ### Instruction:
26
+
27
+ <prompt> (without the <>)
28
+
29
+ ### Response:
30
+ ```
31
+
32
+
33
+ ## How to Get Started with the Model
34
+
35
+ Use the code sample provided in the original post to interact with the model.
36
+ ```python
37
+ from transformers import AutoTokenizer,AutoModelForCausalLM
38
+
39
+ model_id = "malhajar/meditron-70b-chat"
40
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
41
+ device_map="auto",
42
+ torch_dtype=torch.float16,
43
+ revision="main")
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
46
+
47
+ question: "what is tract infection?"
48
+ # For generating a response
49
+ prompt = '''
50
+ ### Instruction:
51
+ {question}
52
+
53
+ ### Response:'''
54
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
55
+ output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
56
+ top_p=0.95)
57
+ response = tokenizer.decode(output[0])
58
+
59
+ print(response)
60
+ ```