metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.450
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.450-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.89
ast-finetuned-audioset-10-10-0.450-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.450 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5513
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4812 | 1.0 | 100 | 0.4780 | 0.86 |
0.4555 | 2.0 | 200 | 0.6969 | 0.795 |
0.106 | 3.0 | 300 | 0.6725 | 0.85 |
0.0063 | 4.0 | 400 | 0.5885 | 0.875 |
0.0004 | 5.0 | 500 | 0.5513 | 0.89 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.2
- Datasets 2.14.7
- Tokenizers 0.15.0