magitz's picture
End of training
11e4613
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-sidewalk-oct-22
    results: []

segformer-b0-finetuned-segments-sidewalk-oct-22

This model is a fine-tuned version of nvidia/mit-b0 on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.7960
  • eval_mean_iou: 0.2053
  • eval_mean_accuracy: 0.2533
  • eval_overall_accuracy: 0.7980
  • eval_accuracy_unlabeled: nan
  • eval_accuracy_flat-road: 0.8959
  • eval_accuracy_flat-sidewalk: 0.9420
  • eval_accuracy_flat-crosswalk: 0.0
  • eval_accuracy_flat-cyclinglane: 0.4535
  • eval_accuracy_flat-parkingdriveway: 0.2273
  • eval_accuracy_flat-railtrack: nan
  • eval_accuracy_flat-curb: 0.3520
  • eval_accuracy_human-person: 0.0
  • eval_accuracy_human-rider: 0.0
  • eval_accuracy_vehicle-car: 0.9346
  • eval_accuracy_vehicle-truck: 0.0
  • eval_accuracy_vehicle-bus: 0.0
  • eval_accuracy_vehicle-tramtrain: nan
  • eval_accuracy_vehicle-motorcycle: 0.0
  • eval_accuracy_vehicle-bicycle: 0.0
  • eval_accuracy_vehicle-caravan: 0.0
  • eval_accuracy_vehicle-cartrailer: 0.0
  • eval_accuracy_construction-building: 0.8792
  • eval_accuracy_construction-door: 0.0
  • eval_accuracy_construction-wall: 0.3746
  • eval_accuracy_construction-fenceguardrail: 0.0
  • eval_accuracy_construction-bridge: 0.0
  • eval_accuracy_construction-tunnel: nan
  • eval_accuracy_construction-stairs: 0.0
  • eval_accuracy_object-pole: 0.0065
  • eval_accuracy_object-trafficsign: 0.0
  • eval_accuracy_object-trafficlight: 0.0
  • eval_accuracy_nature-vegetation: 0.9279
  • eval_accuracy_nature-terrain: 0.8991
  • eval_accuracy_sky: 0.9585
  • eval_accuracy_void-ground: 0.0
  • eval_accuracy_void-dynamic: 0.0
  • eval_accuracy_void-static: 0.0014
  • eval_accuracy_void-unclear: 0.0
  • eval_iou_unlabeled: nan
  • eval_iou_flat-road: 0.6699
  • eval_iou_flat-sidewalk: 0.7999
  • eval_iou_flat-crosswalk: 0.0
  • eval_iou_flat-cyclinglane: 0.4306
  • eval_iou_flat-parkingdriveway: 0.1874
  • eval_iou_flat-railtrack: nan
  • eval_iou_flat-curb: 0.2837
  • eval_iou_human-person: 0.0
  • eval_iou_human-rider: 0.0
  • eval_iou_vehicle-car: 0.6757
  • eval_iou_vehicle-truck: 0.0
  • eval_iou_vehicle-bus: 0.0
  • eval_iou_vehicle-tramtrain: nan
  • eval_iou_vehicle-motorcycle: 0.0
  • eval_iou_vehicle-bicycle: 0.0
  • eval_iou_vehicle-caravan: 0.0
  • eval_iou_vehicle-cartrailer: 0.0
  • eval_iou_construction-building: 0.6298
  • eval_iou_construction-door: 0.0
  • eval_iou_construction-wall: 0.2766
  • eval_iou_construction-fenceguardrail: 0.0
  • eval_iou_construction-bridge: 0.0
  • eval_iou_construction-tunnel: nan
  • eval_iou_construction-stairs: 0.0
  • eval_iou_object-pole: 0.0065
  • eval_iou_object-trafficsign: 0.0
  • eval_iou_object-trafficlight: 0.0
  • eval_iou_nature-vegetation: 0.8333
  • eval_iou_nature-terrain: 0.6916
  • eval_iou_sky: 0.8777
  • eval_iou_void-ground: 0.0
  • eval_iou_void-dynamic: 0.0
  • eval_iou_void-static: 0.0014
  • eval_iou_void-unclear: 0.0
  • eval_runtime: 34.3451
  • eval_samples_per_second: 5.823
  • eval_steps_per_second: 2.912
  • epoch: 2.05
  • step: 820

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1