|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch ViT model.""" |
|
|
|
import collections.abc |
|
import math |
|
from typing import Dict, List, Optional, Set, Tuple, Union |
|
from functools import partial |
|
from enum import Flag, auto |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
ImageClassifierOutput, |
|
MaskedImageModelingOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_vit import ViTConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "ViTConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] |
|
|
|
|
|
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224" |
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" |
|
|
|
|
|
|
|
|
|
class BaseEnumOptions(Flag): |
|
def __str__(self): |
|
return self.name |
|
|
|
@classmethod |
|
def list_names(cls): |
|
return [m.name for m in cls] |
|
class AttentionGateType(BaseEnumOptions): |
|
none = 0 |
|
unconditional_per_head = 1 |
|
conditional_per_head = 2 |
|
conditional_per_token = 3 |
|
|
|
def softmax_n_shifted_zeros(input: torch.Tensor, n: int, dim=-1) -> torch.Tensor: |
|
""" |
|
$\text(softmax)_n(x_i) = exp(x_i) / (n + \sum_j exp(x_j))$ |
|
|
|
Note: softmax_n, with fixed input, is _not_ shift-symmetric when n != 0 |
|
""" |
|
|
|
input_maxes = input.max(dim=dim, keepdim=True).values |
|
|
|
shifted_inputs = torch.subtract(input, input_maxes) |
|
|
|
numerator = torch.exp(shifted_inputs) |
|
original_denominator = numerator.sum(dim=dim, keepdim=True) |
|
|
|
shifted_zeros = torch.multiply(input_maxes, -1) |
|
|
|
denominator = torch.add(original_denominator, |
|
torch.multiply(torch.exp(shifted_zeros), n)) |
|
return torch.divide(numerator, denominator) |
|
|
|
|
|
def softmax_1(input: torch.Tensor, dim=-1) -> torch.Tensor: |
|
""" |
|
$\text(softmax)_n(x_i) = exp(x_i) / (1 + \sum_j exp(x_j))$ |
|
""" |
|
return softmax_n_shifted_zeros(input, 1, dim=dim) |
|
|
|
|
|
def clipped_softmax(data, dim=1, eta=1.1, gamma=-0.1, **kw): |
|
sm_out = torch.nn.functional.softmax(data, dim=dim, **kw) |
|
stretched_out = sm_out * (eta - gamma) + gamma |
|
return torch.clip(stretched_out, 0, 1) |
|
def clipped_softmax1(data, dim=1, eta=1.1, gamma=-0.1, **kw): |
|
sm_out = softmax_1(data, dim=dim, **kw) |
|
stretched_out = sm_out * (eta - gamma) + gamma |
|
return torch.clip(stretched_out, 0, 1) |
|
|
|
class ViTEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. |
|
""" |
|
|
|
def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None |
|
self.patch_embeddings = ViTPatchEmbeddings(config) |
|
num_patches = self.patch_embeddings.num_patches |
|
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.config = config |
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: |
|
""" |
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher |
|
resolution images. |
|
|
|
Source: |
|
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 |
|
""" |
|
|
|
num_patches = embeddings.shape[1] - 1 |
|
num_positions = self.position_embeddings.shape[1] - 1 |
|
if num_patches == num_positions and height == width: |
|
return self.position_embeddings |
|
class_pos_embed = self.position_embeddings[:, 0] |
|
patch_pos_embed = self.position_embeddings[:, 1:] |
|
dim = embeddings.shape[-1] |
|
h0 = height // self.config.patch_size |
|
w0 = width // self.config.patch_size |
|
|
|
|
|
h0, w0 = h0 + 0.1, w0 + 0.1 |
|
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) |
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed, |
|
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] |
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
interpolate_pos_encoding: bool = False, |
|
) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) |
|
|
|
if bool_masked_pos is not None: |
|
seq_length = embeddings.shape[1] |
|
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) |
|
|
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask |
|
|
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
|
|
|
|
if interpolate_pos_encoding: |
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) |
|
else: |
|
embeddings = embeddings + self.position_embeddings |
|
|
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
class ViTPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
f" Expected {self.num_channels} but got {num_channels}." |
|
) |
|
if not interpolate_pos_encoding: |
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model" |
|
f" ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) |
|
return embeddings |
|
|
|
|
|
class ViTSelfAttention(nn.Module): |
|
def __init__(self, config: ViTConfig, |
|
gamma=None, |
|
ssm_eps=None, |
|
tau=None, |
|
skip_attn=False, |
|
attn_gate_type=AttentionGateType.none, |
|
attn_gate_init=None, |
|
attn_gate_mlp=False, |
|
attn_gate_mlp2=False, |
|
attn_gate_linear_all_features=False) -> None: |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
self.softmax_fn = nn.functional.softmax |
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.gamma = gamma |
|
self.ssm_eps = ssm_eps |
|
self.tau = tau |
|
self.max_seq_length = max_seq_length |
|
|
|
|
|
|
|
self.skip_attn = skip_attn |
|
|
|
|
|
self.last_gate_avg_prob = None |
|
self.last_gate_all_probs = None |
|
|
|
self.attn_gate_type = attn_gate_type |
|
self.attn_gate_init = attn_gate_init |
|
self.attn_gate_mlp = attn_gate_mlp |
|
self.attn_gate_mlp2 = attn_gate_mlp2 |
|
self.attn_gate_linear_all_features = attn_gate_linear_all_features |
|
|
|
self.alpha = None |
|
self.gate_fn = torch.sigmoid |
|
self.pooling_fn = partial(torch.mean, dim=1, keepdims=True) |
|
|
|
self.fine_tuning = fine_tuning |
|
|
|
|
|
self.gate_scaling_factor = 1.0 |
|
if self.fine_tuning and self.attn_gate_init is not None: |
|
self.gate_scaling_factor = 1.0 / self.attn_gate_init |
|
|
|
|
|
if self.attn_gate_type == AttentionGateType.unconditional_per_head: |
|
init_alpha = torch.zeros(size=(self.num_attention_heads,)) |
|
self.alpha = nn.Parameter(init_alpha, requires_grad=True) |
|
|
|
elif self.attn_gate_type in ( |
|
AttentionGateType.conditional_per_head, |
|
AttentionGateType.conditional_per_token, |
|
): |
|
if self.attn_gate_linear_all_features: |
|
self.alpha = nn.Linear(self.all_head_size, self.num_attention_heads, bias=True) |
|
|
|
else: |
|
module_list = [] |
|
for _ in range(self.num_attention_heads): |
|
if self.attn_gate_mlp: |
|
fc = nn.Sequential( |
|
nn.Linear( |
|
self.attention_head_size, self.attention_head_size // 4, bias=True |
|
), |
|
nn.ReLU(), |
|
nn.Linear(self.attention_head_size // 4, 1, bias=True), |
|
) |
|
elif self.attn_gate_mlp2: |
|
fc = nn.Sequential( |
|
nn.Linear( |
|
self.attention_head_size, self.attention_head_size, bias=True |
|
), |
|
nn.ReLU(), |
|
nn.Linear(self.attention_head_size, 1, bias=True), |
|
) |
|
else: |
|
fc = nn.Linear(self.attention_head_size, 1, bias=True) |
|
|
|
if self.attn_gate_init is not None: |
|
init_bias = logit(self.attn_gate_init) |
|
torch.nn.init.constant_(fc.bias, init_bias) |
|
|
|
if self.fine_tuning: |
|
|
|
torch.nn.init.normal_(fc.weight, mean=0.0, std=0.01) |
|
|
|
module_list.append(fc) |
|
self.alpha = nn.ModuleList(module_list) |
|
|
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
|
|
attention_probs = self.softmax_fn(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
|
|
|
|
if self.attn_gate_type == AttentionGateType.unconditional_per_head: |
|
gate = self.gate_fn(self.alpha) |
|
context_layer *= gate.view(-1, 1, 1) |
|
|
|
self.last_gate_avg_prob = gate.view(-1) |
|
|
|
elif self.attn_gate_type in ( |
|
AttentionGateType.conditional_per_head, |
|
AttentionGateType.conditional_per_token, |
|
): |
|
|
|
x = hidden_states |
|
|
|
if self.attn_gate_linear_all_features: |
|
alpha = self.alpha(x) |
|
gate = self.gate_fn(alpha) |
|
gate = gate.permute(0, 2, 1).contiguous() |
|
gate = gate.unsqueeze(3) |
|
|
|
else: |
|
x = self.transpose_for_scores(x) |
|
|
|
alpha = [] |
|
for head_idx in range(self.num_attention_heads): |
|
x_head = x[:, head_idx, ...] |
|
fc_head = self.alpha[head_idx] |
|
alpha_head = fc_head(x_head) |
|
if self.attn_gate_type == AttentionGateType.conditional_per_head: |
|
alpha_head = self.pooling_fn(alpha_head) |
|
alpha.append(alpha_head) |
|
alpha = torch.stack(alpha, dim=1) |
|
gate = self.gate_fn(alpha) |
|
|
|
context_layer *= gate * self.gate_scaling_factor |
|
|
|
self.last_gate_all_probs = gate |
|
avg_gate = gate.mean(dim=0) |
|
self.last_gate_avg_prob = avg_gate.view(self.num_attention_heads, -1).mean(dim=1) |
|
|
|
|
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
def scaled_dot_product_attention(query, key, value, softmax_fn, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor: |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
L, S = query.size(-2), key.size(-2) |
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale |
|
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device) |
|
if is_causal: |
|
assert attn_mask is None |
|
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) |
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) |
|
attn_bias.to(query.dtype) |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf")) |
|
else: |
|
attn_bias += attn_mask |
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor |
|
attn_weight += attn_bias |
|
attn_weight = softmax_fn(attn_weight, dim=-1) |
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) |
|
return attn_weight @ value |
|
|
|
class ViTSdpaSelfAttention(ViTSelfAttention): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__(config) |
|
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob |
|
|
|
def forward( |
|
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
context_layer = scaled_dot_product_attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
dropout_p=self.attention_probs_dropout_prob if self.training else 0.0, |
|
attn_mask=head_mask, |
|
softmax_fn = self.softmax_fn, |
|
is_causal=False, |
|
scale=None, |
|
) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
return context_layer, None |
|
|
|
|
|
class ViTSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ViTAttention(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.attention = ViTSelfAttention(config) |
|
self.output = ViTSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads: Set[int]) -> None: |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class ViTSdpaAttention(ViTAttention): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__(config) |
|
self.attention = ViTSdpaSelfAttention(config) |
|
|
|
|
|
class ViTIntermediate(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ViTOutput(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states + input_tensor |
|
|
|
return hidden_states |
|
|
|
|
|
VIT_ATTENTION_CLASSES = { |
|
"eager": ViTAttention, |
|
"sdpa": ViTSdpaAttention, |
|
} |
|
|
|
|
|
class ViTLayer(nn.Module): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = VIT_ATTENTION_CLASSES[config._attn_implementation](config) |
|
self.intermediate = ViTIntermediate(config) |
|
self.output = ViTOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_attention_outputs = self.attention( |
|
self.layernorm_before(hidden_states), |
|
head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
hidden_states = attention_output + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
layer_output = self.intermediate(layer_output) |
|
|
|
|
|
layer_output = self.output(layer_output, hidden_states) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class ViTEncoder(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
layer_head_mask, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class ViTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ViTConfig |
|
base_model_prefix = "vit" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["ViTEmbeddings", "ViTLayer"] |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data = nn.init.trunc_normal_( |
|
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range |
|
).to(module.weight.dtype) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, ViTEmbeddings): |
|
module.position_embeddings.data = nn.init.trunc_normal_( |
|
module.position_embeddings.data.to(torch.float32), |
|
mean=0.0, |
|
std=self.config.initializer_range, |
|
).to(module.position_embeddings.dtype) |
|
|
|
module.cls_token.data = nn.init.trunc_normal_( |
|
module.cls_token.data.to(torch.float32), |
|
mean=0.0, |
|
std=self.config.initializer_range, |
|
).to(module.cls_token.dtype) |
|
|
|
|
|
VIT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`ViTConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
VIT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] |
|
for details. |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
interpolate_pos_encoding (`bool`, *optional*): |
|
Whether to interpolate the pre-trained position encodings. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", |
|
VIT_START_DOCSTRING, |
|
) |
|
class ViTModel(ViTPreTrainedModel): |
|
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) |
|
self.encoder = ViTEncoder(config) |
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.pooler = ViTPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> ViTPatchEmbeddings: |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPooling, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
|
|
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype |
|
if pixel_values.dtype != expected_dtype: |
|
pixel_values = pixel_values.to(expected_dtype) |
|
|
|
embedding_output = self.embeddings( |
|
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class ViTPooler(nn.Module): |
|
def __init__(self, config: ViTConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
@add_start_docstrings( |
|
"""ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). |
|
|
|
<Tip> |
|
|
|
Note that we provide a script to pre-train this model on custom data in our [examples |
|
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). |
|
|
|
</Tip> |
|
""", |
|
VIT_START_DOCSTRING, |
|
) |
|
class ViTForMaskedImageModeling(ViTPreTrainedModel): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True) |
|
|
|
self.decoder = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels=config.hidden_size, |
|
out_channels=config.encoder_stride**2 * config.num_channels, |
|
kernel_size=1, |
|
), |
|
nn.PixelShuffle(config.encoder_stride), |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, MaskedImageModelingOutput]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
|
|
Returns: |
|
|
|
Examples: |
|
```python |
|
>>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") |
|
>>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k") |
|
|
|
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 |
|
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values |
|
>>> # create random boolean mask of shape (batch_size, num_patches) |
|
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() |
|
|
|
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) |
|
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction |
|
>>> list(reconstructed_pixel_values.shape) |
|
[1, 3, 224, 224] |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride): |
|
raise ValueError( |
|
"When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that " |
|
"the reconstructed image has the same dimensions as the input. " |
|
f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}." |
|
) |
|
|
|
outputs = self.vit( |
|
pixel_values, |
|
bool_masked_pos=bool_masked_pos, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
interpolate_pos_encoding=interpolate_pos_encoding, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
|
|
sequence_output = sequence_output[:, 1:] |
|
batch_size, sequence_length, num_channels = sequence_output.shape |
|
height = width = math.floor(sequence_length**0.5) |
|
sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) |
|
|
|
|
|
reconstructed_pixel_values = self.decoder(sequence_output) |
|
|
|
masked_im_loss = None |
|
if bool_masked_pos is not None: |
|
size = self.config.image_size // self.config.patch_size |
|
bool_masked_pos = bool_masked_pos.reshape(-1, size, size) |
|
mask = ( |
|
bool_masked_pos.repeat_interleave(self.config.patch_size, 1) |
|
.repeat_interleave(self.config.patch_size, 2) |
|
.unsqueeze(1) |
|
.contiguous() |
|
) |
|
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") |
|
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels |
|
|
|
if not return_dict: |
|
output = (reconstructed_pixel_values,) + outputs[1:] |
|
return ((masked_im_loss,) + output) if masked_im_loss is not None else output |
|
|
|
return MaskedImageModelingOutput( |
|
loss=masked_im_loss, |
|
reconstruction=reconstructed_pixel_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of |
|
the [CLS] token) e.g. for ImageNet. |
|
|
|
<Tip> |
|
|
|
Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by |
|
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained |
|
position embeddings to the higher resolution. |
|
|
|
</Tip> |
|
""", |
|
VIT_START_DOCSTRING, |
|
) |
|
class ViTForImageClassification(ViTPreTrainedModel): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.vit = ViTModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_IMAGE_CLASS_CHECKPOINT, |
|
output_type=ImageClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, |
|
) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, ImageClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.vit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
interpolate_pos_encoding=interpolate_pos_encoding, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.classifier(sequence_output[:, 0, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|