Adding modes, graphs and metadata.
Browse files- README.md +1 -1
- model_card/pruning.svg +1 -1
- model_meta.json +160 -0
README.md
CHANGED
@@ -42,7 +42,7 @@ Here is a detailed view on how the remaining heads are distributed in the networ
|
|
42 |
|
43 |
## Density plot
|
44 |
|
45 |
-
<script src="/madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1/raw/main/model_card/density.js" id="
|
46 |
|
47 |
## Details
|
48 |
|
|
|
42 |
|
43 |
## Density plot
|
44 |
|
45 |
+
<script src="/madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1/raw/main/model_card/density.js" id="2087227b-6b81-4065-969b-41ea1f61c72e"></script>
|
46 |
|
47 |
## Details
|
48 |
|
model_card/pruning.svg
CHANGED
model_meta.json
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"args": {
|
3 |
+
"adam_epsilon": 1e-08,
|
4 |
+
"alpha_ce": 0.1,
|
5 |
+
"alpha_distil": 0.9,
|
6 |
+
"ampere_learning_rate": 0.01,
|
7 |
+
"ampere_mask_init": "constant",
|
8 |
+
"ampere_mask_scale": 0.0,
|
9 |
+
"ampere_pruning_method": "disabled",
|
10 |
+
"cache_dir": "",
|
11 |
+
"config_name": "",
|
12 |
+
"data_dir": "squad_data",
|
13 |
+
"do_eval": true,
|
14 |
+
"do_lower_case": true,
|
15 |
+
"do_train": true,
|
16 |
+
"doc_stride": 128,
|
17 |
+
"eval_all_checkpoints": true,
|
18 |
+
"eval_batch_size": 16,
|
19 |
+
"evaluate_during_training": false,
|
20 |
+
"final_ampere_temperature": 20,
|
21 |
+
"final_lambda": 100,
|
22 |
+
"final_shuffling_temperature": 20,
|
23 |
+
"final_threshold": 0.1,
|
24 |
+
"final_warmup": 10,
|
25 |
+
"fp16": false,
|
26 |
+
"fp16_opt_level": "O1",
|
27 |
+
"global_topk": false,
|
28 |
+
"global_topk_frequency_compute": 25,
|
29 |
+
"gradient_accumulation_steps": 1,
|
30 |
+
"in_shuffling_group": 4,
|
31 |
+
"initial_ampere_temperature": 0.0,
|
32 |
+
"initial_shuffling_temperature": 0.1,
|
33 |
+
"initial_threshold": 0.0,
|
34 |
+
"initial_warmup": 1,
|
35 |
+
"lang_id": 0,
|
36 |
+
"learning_rate": 3e-05,
|
37 |
+
"local_rank": -1,
|
38 |
+
"logging_steps": 500,
|
39 |
+
"mask_block_cols": 32,
|
40 |
+
"mask_block_rows": 32,
|
41 |
+
"mask_init": "constant",
|
42 |
+
"mask_scale": 0.0,
|
43 |
+
"mask_scores_learning_rate": 0.01,
|
44 |
+
"max_answer_length": 30,
|
45 |
+
"max_grad_norm": 1.0,
|
46 |
+
"max_query_length": 64,
|
47 |
+
"max_seq_length": 384,
|
48 |
+
"max_steps": -1,
|
49 |
+
"model_name_or_path": "bert-base-uncased",
|
50 |
+
"model_type": "masked_bert",
|
51 |
+
"n_best_size": 20,
|
52 |
+
"n_gpu": 1,
|
53 |
+
"no_cuda": false,
|
54 |
+
"null_score_diff_threshold": 0.0,
|
55 |
+
"num_train_epochs": 20.0,
|
56 |
+
"out_shuffling_group": 4,
|
57 |
+
"overwrite_cache": false,
|
58 |
+
"overwrite_output_dir": true,
|
59 |
+
"per_gpu_eval_batch_size": 16,
|
60 |
+
"per_gpu_train_batch_size": 16,
|
61 |
+
"predict_file": "dev-v1.1.json",
|
62 |
+
"pruning_method": "sigmoied_threshold",
|
63 |
+
"pruning_submethod": "default",
|
64 |
+
"regularization": "l1",
|
65 |
+
"save_steps": 5000,
|
66 |
+
"seed": 42,
|
67 |
+
"server_ip": "",
|
68 |
+
"server_port": "",
|
69 |
+
"shuffling_learning_rate": 0.001,
|
70 |
+
"shuffling_method": "disabled",
|
71 |
+
"teacher_name_or_path": "csarron/bert-base-uncased-squad-v1",
|
72 |
+
"teacher_type": "bert",
|
73 |
+
"temperature": 2.0,
|
74 |
+
"threads": 8,
|
75 |
+
"tokenizer_name": "",
|
76 |
+
"train_batch_size": 16,
|
77 |
+
"train_file": "train-v1.1.json",
|
78 |
+
"truncate_train_examples": -1,
|
79 |
+
"verbose_logging": false,
|
80 |
+
"version_2_with_negative": false,
|
81 |
+
"warmup_steps": 5400,
|
82 |
+
"weight_decay": 0.0
|
83 |
+
},
|
84 |
+
"config": {
|
85 |
+
"_name_or_path": "bert-base-uncased",
|
86 |
+
"ampere_mask_init": "constant",
|
87 |
+
"ampere_mask_scale": 0.0,
|
88 |
+
"ampere_pruning_method": "disabled",
|
89 |
+
"architectures": ["MaskedBertForQuestionAnswering"],
|
90 |
+
"attention_probs_dropout_prob": 0.1,
|
91 |
+
"hidden_act": "gelu",
|
92 |
+
"hidden_dropout_prob": 0.1,
|
93 |
+
"hidden_size": 768,
|
94 |
+
"in_shuffling_group": 4,
|
95 |
+
"initializer_range": 0.02,
|
96 |
+
"intermediate_size": 3072,
|
97 |
+
"layer_norm_eps": 1e-12,
|
98 |
+
"mask_block_cols": 32,
|
99 |
+
"mask_block_rows": 32,
|
100 |
+
"mask_init": "constant",
|
101 |
+
"mask_scale": 0.0,
|
102 |
+
"max_position_embeddings": 512,
|
103 |
+
"model_type": "masked_bert",
|
104 |
+
"num_attention_heads": 12,
|
105 |
+
"num_hidden_layers": 12,
|
106 |
+
"out_shuffling_group": 4,
|
107 |
+
"pad_token_id": 0,
|
108 |
+
"pruning_method": "sigmoied_threshold",
|
109 |
+
"pruning_submethod": "default",
|
110 |
+
"shuffling_method": "disabled",
|
111 |
+
"type_vocab_size": 2,
|
112 |
+
"vocab_size": 30522
|
113 |
+
},
|
114 |
+
"packaging": {
|
115 |
+
"model_name": "madlag/bert-base-uncased-squad1.1-block-sparse-0.13-v1",
|
116 |
+
"model_owner": "madlag",
|
117 |
+
"pytorch_final_file_size": 359300023
|
118 |
+
},
|
119 |
+
"performance": {
|
120 |
+
"dense": {
|
121 |
+
"eval_elapsed_time": 43.292644419998396
|
122 |
+
},
|
123 |
+
"pytorch_block_sparse": {
|
124 |
+
"eval_elapsed_time": 26.211968197021633
|
125 |
+
},
|
126 |
+
"speedup": 1.6516365384922744
|
127 |
+
},
|
128 |
+
"precision": {
|
129 |
+
"exact": 74.38978576660156,
|
130 |
+
"f1": 83.25814819335938
|
131 |
+
},
|
132 |
+
"sparsity": {
|
133 |
+
"ampere": false,
|
134 |
+
"block_size": [32, 32],
|
135 |
+
"block_sparse": true,
|
136 |
+
"block_sparse_density": 0.12510850694444445,
|
137 |
+
"block_sparse_nnz": 10377,
|
138 |
+
"block_sparse_total": 82944,
|
139 |
+
"global_density": 0.32128202590889765,
|
140 |
+
"is_block_sparse_valid": true,
|
141 |
+
"nnz_parameters": 35175170,
|
142 |
+
"parameters": 109483778,
|
143 |
+
"pruned_heads": {
|
144 |
+
"0": [0, 1, 2, 4, 5, 6, 7, 9, 11],
|
145 |
+
"1": [0, 1, 2, 3, 5, 6, 7, 8, 9],
|
146 |
+
"2": [1, 2, 3, 4, 5, 7, 8, 10, 11],
|
147 |
+
"3": [2, 3, 4, 6, 7, 10],
|
148 |
+
"4": [0, 1, 2, 4, 6, 7, 8, 10, 11],
|
149 |
+
"5": [0, 1, 2, 4, 5, 6, 7, 11],
|
150 |
+
"6": [0, 2, 3, 4, 6, 7, 10],
|
151 |
+
"7": [1, 2, 3, 5, 6, 7, 11],
|
152 |
+
"8": [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
153 |
+
"9": [1, 3, 4, 5, 7, 9, 10],
|
154 |
+
"10": [0, 1, 2, 4, 5, 6, 7, 8, 9],
|
155 |
+
"11": [0, 2, 3, 5, 7, 8, 10, 11]
|
156 |
+
},
|
157 |
+
"total_attention_heads": 144,
|
158 |
+
"total_pruned_attention_heads": 97
|
159 |
+
}
|
160 |
+
}
|