maddes8cht commited on
Commit
9b6f5c9
·
1 Parent(s): 66adb65

"Update README.md"

Browse files
Files changed (1) hide show
  1. README.md +281 -0
README.md ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - gpt
7
+ - llm
8
+ - large language model
9
+ - h2o-llmstudio
10
+ inference: false
11
+ thumbnail: >-
12
+ https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
13
+ license: apache-2.0
14
+ datasets:
15
+ - OpenAssistant/oasst1
16
+ ---
17
+ [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()
18
+
19
+ I am continuously enhancing the structure of these model descriptions, and they now provide even more comprehensive information to help you find the best models for your specific needs.
20
+
21
+ # h2ogpt-gm-oasst1-multilang-2048-falcon-7b - GGUF
22
+ - Model creator: [h2oai](https://huggingface.co/h2oai)
23
+ - Original model: [h2ogpt-gm-oasst1-multilang-2048-falcon-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b)
24
+
25
+ # Note: Important Update for Falcon Models in llama.cpp Versions After October 18, 2023
26
+
27
+ As noted on the [Llama.cpp]([ggerganov/llama.cpp: Port of Facebook's LLaMA model in C/C++ (github.com)](https://github.com/ggerganov/llama.cpp#hot-topics) GitHub repository, all new releases of Llama.cpp will require a re-quantization due to the implementation of the new BPE tokenizer. I am working diligently to make the updated models available for you.
28
+
29
+ Here's what you need to know:
30
+
31
+ **Stay Informed:** Application software using llama.cpp libraries will follow soon. Keep an eye on the release schedules of your favorite software applications that rely on llama.cpp. They will likely provide instructions on how to integrate the new models.
32
+
33
+ **Monitor Upload Times:** Please keep a close watch on the upload times of the available files on my Hugging Face Model pages. This will help you identify which files have already been updated and are ready for download, ensuring you have the most current Falcon models at your disposal.
34
+
35
+ **Download Promptly:** Once the updated Falcon models are available on my Hugging Face page, be sure to download them promptly to ensure compatibility with the latest [llama.cpp]([ggerganov/llama.cpp: Port of Facebook's LLaMA model in C/C++ (github.com)](https://github.com/ggerganov/llama.cpp) versions.
36
+
37
+ Please understand that this change specifically affects **Falcon** and **Starcoder** models, other models remain unaffected. Consequently, software providers may not emphasize this change as prominently.
38
+
39
+ As a solo operator of this page, I'm doing my best to expedite the process, but please bear with me as this may take some time.
40
+
41
+
42
+
43
+
44
+ # About GGUF format
45
+
46
+ `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
47
+ A growing list of Software is using it and can therefore use this model.
48
+ The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
49
+
50
+ # Quantization variants
51
+
52
+ There is a bunch of quantized files available. How to choose the best for you:
53
+
54
+ # Legacy quants
55
+
56
+ Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
57
+ Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
58
+ Falcon 7B models cannot be quantized to K-quants.
59
+
60
+ # K-quants
61
+
62
+ K-quants are based on the idea that the quantization of certain parts affects the quality in different ways. If you quantize certain parts more and others less, you get a more powerful model with the same file size, or a smaller file size and lower memory load with comparable performance.
63
+ So, if possible, use K-quants.
64
+ With a Q6_K you should find it really hard to find a quality difference to the original model - ask your model two times the same question and you may encounter bigger quality differences.
65
+
66
+
67
+
68
+
69
+ ---
70
+
71
+ # Original Model Card:
72
+ # Model Card
73
+ ## Summary
74
+
75
+ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
76
+ - Base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
77
+ - Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28)
78
+
79
+
80
+ ## Usage
81
+
82
+ To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate`, `torch` and `einops` libraries installed.
83
+
84
+ ```bash
85
+ pip install transformers==4.29.2
86
+ pip install accelerate==0.19.0
87
+ pip install torch==2.0.0
88
+ pip install einops==0.6.1
89
+ ```
90
+
91
+ ```python
92
+ import torch
93
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
94
+
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained(
97
+ "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
98
+ use_fast=False,
99
+ padding_side="left",
100
+ trust_remote_code=True,
101
+ )
102
+
103
+ generate_text = pipeline(
104
+ model="h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
105
+ tokenizer=tokenizer,
106
+ torch_dtype=torch.float16,
107
+ trust_remote_code=True,
108
+ use_fast=False,
109
+ device_map={"": "cuda:0"},
110
+ )
111
+
112
+ res = generate_text(
113
+ "Why is drinking water so healthy?",
114
+ min_new_tokens=2,
115
+ max_new_tokens=1024,
116
+ do_sample=False,
117
+ num_beams=1,
118
+ temperature=float(0.3),
119
+ repetition_penalty=float(1.2),
120
+ renormalize_logits=True
121
+ )
122
+ print(res[0]["generated_text"])
123
+ ```
124
+
125
+ You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
126
+
127
+ ```python
128
+ print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
129
+ ```
130
+
131
+ ```bash
132
+ <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
133
+ ```
134
+
135
+ Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
136
+
137
+
138
+ ```python
139
+ import torch
140
+ from h2oai_pipeline import H2OTextGenerationPipeline
141
+ from transformers import AutoModelForCausalLM, AutoTokenizer
142
+
143
+ tokenizer = AutoTokenizer.from_pretrained(
144
+ "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
145
+ use_fast=False,
146
+ padding_side="left",
147
+ trust_remote_code=True,
148
+ )
149
+ model = AutoModelForCausalLM.from_pretrained(
150
+ "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
151
+ torch_dtype=torch.bfloat16,
152
+ device_map={"": "cuda:0"},
153
+ trust_remote_code=True,
154
+ )
155
+ generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
156
+
157
+ res = generate_text(
158
+ "Why is drinking water so healthy?",
159
+ min_new_tokens=2,
160
+ max_new_tokens=1024,
161
+ do_sample=False,
162
+ num_beams=1,
163
+ temperature=float(0.3),
164
+ repetition_penalty=float(1.2),
165
+ renormalize_logits=True
166
+ )
167
+ print(res[0]["generated_text"])
168
+ ```
169
+
170
+ You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
171
+
172
+ ```python
173
+ from transformers import AutoModelForCausalLM, AutoTokenizer
174
+
175
+ model_name = "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b" # either local folder or huggingface model name
176
+ # Important: The prompt needs to be in the same format the model was trained with.
177
+ # You can find an example prompt in the experiment logs.
178
+ prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
179
+
180
+ tokenizer = AutoTokenizer.from_pretrained(
181
+ model_name,
182
+ use_fast=False,
183
+ trust_remote_code=True,
184
+ )
185
+ model = AutoModelForCausalLM.from_pretrained(
186
+ model_name,
187
+ torch_dtype=torch.bfloat16,
188
+ device_map={"": "cuda:0"},
189
+ trust_remote_code=True,
190
+ )
191
+ model.cuda().eval()
192
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
193
+
194
+ # generate configuration can be modified to your needs
195
+ tokens = model.generate(
196
+ **inputs,
197
+ min_new_tokens=2,
198
+ max_new_tokens=1024,
199
+ do_sample=False,
200
+ num_beams=1,
201
+ temperature=float(0.3),
202
+ repetition_penalty=float(1.2),
203
+ renormalize_logits=True
204
+ )[0]
205
+
206
+ tokens = tokens[inputs["input_ids"].shape[1]:]
207
+ answer = tokenizer.decode(tokens, skip_special_tokens=True)
208
+ print(answer)
209
+ ```
210
+
211
+ ## Model Architecture
212
+
213
+ ```
214
+ RWForCausalLM(
215
+ (transformer): RWModel(
216
+ (word_embeddings): Embedding(65024, 4544)
217
+ (h): ModuleList(
218
+ (0-31): 32 x DecoderLayer(
219
+ (input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
220
+ (self_attention): Attention(
221
+ (maybe_rotary): RotaryEmbedding()
222
+ (query_key_value): Linear(in_features=4544, out_features=4672, bias=False)
223
+ (dense): Linear(in_features=4544, out_features=4544, bias=False)
224
+ (attention_dropout): Dropout(p=0.0, inplace=False)
225
+ )
226
+ (mlp): MLP(
227
+ (dense_h_to_4h): Linear(in_features=4544, out_features=18176, bias=False)
228
+ (act): GELU(approximate='none')
229
+ (dense_4h_to_h): Linear(in_features=18176, out_features=4544, bias=False)
230
+ )
231
+ )
232
+ )
233
+ (ln_f): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
234
+ )
235
+ (lm_head): Linear(in_features=4544, out_features=65024, bias=False)
236
+ )
237
+ ```
238
+
239
+ ## Model Configuration
240
+
241
+ This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
242
+
243
+
244
+ ## Model Validation
245
+
246
+ Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
247
+
248
+ ```bash
249
+ CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
250
+ ```
251
+
252
+
253
+ ## Disclaimer
254
+
255
+ Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
256
+
257
+ - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
258
+ - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
259
+ - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
260
+ - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
261
+ - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
262
+ - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
263
+
264
+ By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
265
+
266
+ ***End of original Model File***
267
+ ---
268
+
269
+
270
+ ## Please consider to support my work
271
+ **Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
272
+
273
+ <center>
274
+
275
+ [![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
276
+ [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
277
+ [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
278
+ [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
279
+ [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)
280
+
281
+ </center>