metadata
license: apache-2.0
tags:
- classification
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
model-index:
- name: clasificador-glue
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: irony
split: test
args: irony
metrics:
- name: Accuracy
type: accuracy
value: 0.6836734693877551
clasificador-glue
This model is a fine-tuned version of bert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 1.3017
- Accuracy: 0.6837
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 358 | 0.8826 | 0.6084 |
0.6268 | 2.0 | 716 | 0.6036 | 0.7079 |
0.3358 | 3.0 | 1074 | 1.3017 | 0.6837 |
Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3