m7n's picture
End of training
3caf0cb verified
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: >-
      A datavisualization in the style of <s0><s1> still life of a skull made of
      cauliflower
    output:
      url: image_0.png
  - text: >-
      A datavisualization in the style of <s0><s1> still life of a skull made of
      cauliflower
    output:
      url: image_1.png
  - text: >-
      A datavisualization in the style of <s0><s1> still life of a skull made of
      cauliflower
    output:
      url: image_2.png
  - text: >-
      A datavisualization in the style of <s0><s1> still life of a skull made of
      cauliflower
    output:
      url: image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: datavisualization in the style of <s0><s1>
license: openrail++

SDXL LoRA DreamBooth - m7n/dataviz-sdxl-lora-001

Prompt
A datavisualization in the style of <s0><s1> still life of a skull made of cauliflower
Prompt
A datavisualization in the style of <s0><s1> still life of a skull made of cauliflower
Prompt
A datavisualization in the style of <s0><s1> still life of a skull made of cauliflower
Prompt
A datavisualization in the style of <s0><s1> still life of a skull made of cauliflower

Model description

These are m7n/dataviz-sdxl-lora-001 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('m7n/dataviz-sdxl-lora-001', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='m7n/dataviz-sdxl-lora-001', filename='dataviz-sdxl-lora-001_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('A datavisualization in the style of <s0><s1> still life of a skull made of cauliflower').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.