|
--- |
|
language: is |
|
datasets: |
|
- malromur |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
widget: |
|
- example_title: Malromur sample 1608 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/resolve/main/sample1608.flac |
|
- example_title: Malromur sample 3860 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/resolve/main/sample3860.flac |
|
model-index: |
|
- name: XLSR Wav2Vec2 Icelandic by Mehrdad Farahani |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Malromur is |
|
type: malromur |
|
args: lt |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 09.21 |
|
|
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Icelandic |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Icelandic using [Malromur](https://clarin.is/en/resources/malromur/). When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
|
|
**Requirements** |
|
```bash |
|
# requirement packages |
|
!pip install git+https://github.com/huggingface/datasets.git |
|
!pip install git+https://github.com/huggingface/transformers.git |
|
!pip install torchaudio |
|
!pip install librosa |
|
!pip install jiwer |
|
!pip install num2words |
|
``` |
|
|
|
**Normalizer** |
|
```bash |
|
|
|
# num2word packages |
|
# Original source: https://github.com/savoirfairelinux/num2words |
|
!mkdir -p ./num2words |
|
!wget -O num2words/__init__.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/__init__.py |
|
!wget -O num2words/base.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/base.py |
|
!wget -O num2words/compat.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/compat.py |
|
!wget -O num2words/currency.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/currency.py |
|
!wget -O num2words/lang_EU.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_EU.py |
|
!wget -O num2words/lang_IS.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_IS.py |
|
!wget -O num2words/utils.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/utils.py |
|
|
|
# Malromur_test selected based on gender and age |
|
!wget -O malromur_test.csv https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/malromur_test.csv |
|
|
|
# Normalizer |
|
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/normalizer.py |
|
``` |
|
|
|
**Prediction** |
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset |
|
|
|
import numpy as np |
|
import re |
|
import string |
|
|
|
import IPython.display as ipd |
|
|
|
from normalizer import Normalizer |
|
|
|
normalizer = Normalizer(lang="is") |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device) |
|
|
|
dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"] |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"}, |
|
remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict, batched=True, batch_size=8) |
|
|
|
max_items = np.random.randint(0, len(result), 20).tolist() |
|
for i in max_items: |
|
reference, predicted = result["cleaned_sentence"][i], result["predicted"][i] |
|
print("reference:", reference) |
|
print("predicted:", predicted) |
|
print('---') |
|
``` |
|
|
|
**Output:** |
|
```text |
|
reference: eða eitthvað annað dýr |
|
predicted: eða eitthvað annað dýr |
|
--- |
|
reference: oddgerður |
|
predicted: oddgerður |
|
--- |
|
reference: eiðný |
|
predicted: eiðný |
|
--- |
|
reference: löndum |
|
predicted: löndum |
|
--- |
|
reference: tileinkaði bróður sínum markið |
|
predicted: tileinkaði bróður sínum markið |
|
--- |
|
reference: þetta er svo mikill hégómi |
|
predicted: þetta er svo mikill hégómi |
|
--- |
|
reference: timarit is |
|
predicted: timarit is |
|
--- |
|
reference: stefna strax upp aftur |
|
predicted: stefna strax upp aftur |
|
--- |
|
reference: brekkuflöt |
|
predicted: brekkuflöt |
|
--- |
|
reference: áætlunarferð frestað vegna veðurs |
|
predicted: áætluna ferð frestað vegna veðurs |
|
--- |
|
reference: sagði af sér vegna kláms |
|
predicted: sagði af sér vegni kláms |
|
--- |
|
reference: grímúlfur |
|
predicted: grímúlgur |
|
--- |
|
reference: lýsti sig saklausan |
|
predicted: lýsti sig saklausan |
|
--- |
|
reference: belgingur is |
|
predicted: belgingur is |
|
--- |
|
reference: sambía |
|
predicted: sambía |
|
--- |
|
reference: geirastöðum |
|
predicted: geirastöðum |
|
--- |
|
reference: varð tvisvar fyrir eigin bíl |
|
predicted: var tvisvar fyrir eigin bíl |
|
--- |
|
reference: reykjavöllum |
|
predicted: reykjavöllum |
|
--- |
|
reference: miklir menn eru þeir þremenningar |
|
predicted: miklir menn eru þeir þremenningar |
|
--- |
|
reference: handverkoghonnun is |
|
predicted: handverkoghonnun is |
|
--- |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the test data of Malromur. |
|
|
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset, load_metric |
|
|
|
import numpy as np |
|
import re |
|
import string |
|
|
|
from normalizer import Normalizer |
|
|
|
normalizer = Normalizer(lang="is") |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device) |
|
|
|
dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"] |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"}, |
|
remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict, batched=True, batch_size=8) |
|
|
|
wer = load_metric("wer") |
|
|
|
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["cleaned_sentence"]))) |
|
``` |
|
|
|
|
|
**Test Result**: |
|
- WER: 09.21% |
|
|
|
|
|
## Training & Report |
|
The Common Voice `train`, `validation` datasets were used for training. |
|
|
|
You can see the training states [here](https://wandb.ai/m3hrdadfi/wav2vec2_large_xlsr_is/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-Icelandic--Vmlldzo2Mjk3ODc?accessToken=j7neoz71mce1fkzt0bch4j0l50witnmme07xe90nvs769kjjtbwneu2wfz3oip16) |
|
|
|
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Icelandic_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb) |
|
|
|
|
|
## Questions? |
|
Post a Github issue on the [Wav2Vec](https://github.com/m3hrdadfi/wav2vec) repo. |