mishig's picture
mishig HF staff
Upload README.md
a36185c
|
raw
history blame
13.9 kB
metadata
language: ka
datasets:
  - common_voice
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
widget:
  - example_title: Common Voice sample 566
    src: >-
      https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample566.flac
  - example_title: Common Voice sample 95
    src: >-
      https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample95.flac
model-index:
  - name: XLSR Wav2Vec2 Georgian by Mehrdad Farahani
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice ka
          type: common_voice
          args: ka
        metrics:
          - name: Test WER
            type: wer
            value: 43.86

Wav2Vec2-Large-XLSR-53-Georgian

Fine-tuned facebook/wav2vec2-large-xlsr-53 in Georgian using Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

Requirements

# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer

Normalizer

!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py

Prediction

import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset

import numpy as np
import re
import string

import IPython.display as ipd

from normalizer import normalizer


def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)

    batch["speech"] = speech_array
    return batch


def predict(batch):
    features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)

    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits 
        
    pred_ids = torch.argmax(logits, dim=-1)

    batch["predicted"] = processor.batch_decode(pred_ids)[0]
    return batch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)

dataset = load_dataset("common_voice", "ka", split="test[:1%]")
dataset = dataset.map(
    normalizer, 
    fn_kwargs={"remove_extra_space": True},
    remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)

dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)

max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
    reference, predicted =  result["sentence"][i], result["predicted"][i]
    print("reference:", reference)
    print("predicted:", predicted)
    print('---')

Output: ```text reference: แƒžแƒ แƒ”แƒ–แƒ˜แƒ“แƒ”แƒœแƒขแƒแƒ‘แƒ˜แƒกแƒแƒก แƒ‘แƒฃแƒจแƒ˜ แƒกแƒแƒฅแƒแƒ แƒ—แƒ•แƒ”แƒšแƒแƒก แƒ“แƒ แƒฃแƒ™แƒ แƒแƒ˜แƒœแƒ˜แƒก แƒ“แƒ”แƒ›แƒแƒ™แƒ แƒแƒขแƒ˜แƒฃแƒš แƒ›แƒแƒซแƒ แƒแƒแƒ‘แƒ”แƒ‘แƒ˜แƒก แƒ“แƒ แƒœแƒแƒขแƒแƒจแƒ˜ แƒ’แƒแƒฌแƒ”แƒ•แƒ แƒ˜แƒแƒœแƒ”แƒ‘แƒ˜แƒก แƒแƒฅแƒขแƒ˜แƒฃแƒ แƒ˜ แƒ›แƒฎแƒแƒ แƒ“แƒแƒ›แƒญแƒ”แƒ แƒ˜ แƒ˜แƒงแƒ predicted: แƒžแƒ แƒ”แƒ–แƒ˜แƒ“แƒ”แƒœแƒขแƒ แƒ•แƒ˜แƒกแƒแƒก แƒ‘แƒฃแƒจแƒ˜ แƒกแƒแƒฅแƒแƒ แƒ—แƒ•แƒ”แƒšแƒแƒก แƒ“แƒ แƒฃแƒ™แƒ แƒแƒ˜แƒœแƒ˜แƒก แƒ“แƒ”แƒ›แƒแƒ™แƒ แƒแƒขแƒ˜แƒฃแƒš แƒ›แƒแƒซแƒ แƒแƒแƒ‘แƒ”แƒ‘แƒ˜แƒก แƒ“แƒ แƒœแƒแƒขแƒ˜แƒจแƒ˜ แƒ“แƒแƒฌแƒ”แƒ•แƒ แƒ˜แƒแƒœแƒ”แƒ‘แƒ˜แƒก แƒแƒฅแƒขแƒ˜แƒฃแƒ แƒ˜ แƒ›แƒฎแƒแƒ แƒ“แƒแƒ›แƒญแƒ”แƒ แƒ˜ แƒ˜แƒงแƒ

reference: แƒจแƒ”แƒกแƒแƒซแƒšแƒ”แƒ‘แƒ”แƒšแƒ˜แƒ แƒ›แƒ˜แƒกแƒ˜ แƒ“แƒแƒ›แƒแƒœแƒ”แƒ‘แƒ แƒ“แƒ แƒ›แƒกแƒแƒฎแƒฃแƒ  แƒ“แƒ”แƒ›แƒแƒœแƒแƒ“ แƒ’แƒแƒ“แƒแƒฅแƒชแƒ”แƒ•แƒ predicted: แƒจแƒ”แƒกแƒแƒซแƒšแƒ”แƒ‘แƒ”แƒšแƒ˜แƒ แƒ›แƒ˜แƒกแƒ˜ แƒ“แƒแƒ›แƒแƒœแƒ”แƒ‘แƒแƒ— แƒ“แƒ แƒ›แƒกแƒแƒฎแƒฃแƒ แƒ“แƒ”แƒ›แƒแƒœแƒแƒ“ แƒ’แƒแƒ“แƒแƒฅแƒชแƒ”แƒ•แƒ

reference: แƒ”แƒก แƒ’แƒแƒ›แƒแƒกแƒแƒฎแƒฃแƒšแƒ”แƒ‘แƒ”แƒ‘แƒ˜ แƒแƒฆแƒ‘แƒ”แƒญแƒ“แƒ˜แƒšแƒ˜ แƒ˜แƒงแƒ แƒ›แƒแƒกแƒ™แƒแƒ•แƒ˜แƒก แƒ“แƒ˜แƒ“แƒ˜ แƒ›แƒ—แƒแƒ•แƒ แƒ”แƒ‘แƒ˜แƒกแƒ แƒ“แƒ แƒ›แƒ”แƒคแƒ”แƒ”แƒ‘แƒ˜แƒก แƒ‘แƒ”แƒญแƒ“แƒ”แƒ‘แƒ–แƒ” predicted: แƒ”แƒก แƒ’แƒแƒ›แƒแƒกแƒแƒฎแƒฃแƒšแƒ”แƒ‘แƒ”แƒ‘แƒ˜ แƒแƒฆแƒ‘แƒ”แƒญแƒ“แƒ˜แƒšแƒ˜ แƒ˜แƒงแƒ แƒ›แƒแƒกแƒ™แƒแƒ•แƒ˜แƒก แƒ“แƒ˜แƒ“แƒ˜ แƒ›แƒ—แƒแƒ•แƒ แƒ”แƒ‘แƒ˜แƒกแƒ แƒ“แƒ แƒ›แƒ”แƒคแƒ”แƒ”แƒ‘แƒ˜แƒก แƒ‘แƒ”แƒญแƒ“แƒ”แƒ‘แƒ–แƒ”

reference: แƒฏแƒแƒšแƒ˜แƒ› แƒแƒฅแƒ แƒแƒก แƒ’แƒšแƒแƒ‘แƒฃแƒกแƒ˜แƒกแƒ แƒ“แƒ แƒ™แƒ˜แƒœแƒแƒ›แƒกแƒแƒฎแƒ˜แƒแƒ‘แƒ—แƒ แƒ’แƒ˜แƒšแƒ“แƒ˜แƒ˜แƒก แƒœแƒแƒ›แƒ˜แƒœแƒแƒชแƒ˜แƒ”แƒ‘แƒ˜ แƒ›แƒ˜แƒ˜แƒฆแƒ predicted: แƒฏแƒแƒšแƒ˜ แƒ›แƒแƒฅแƒ แƒแƒก แƒ’แƒšแƒแƒ‘แƒฃแƒกแƒ˜แƒกแƒ แƒ“แƒ แƒ™แƒ˜แƒœแƒแƒ›แƒกแƒแƒฎแƒ˜แƒแƒ‘แƒ—แƒ แƒ’แƒ˜แƒšแƒ“แƒ˜แƒ˜แƒก แƒœแƒแƒ›แƒ˜แƒœแƒแƒชแƒ˜แƒ”แƒ‘แƒ˜ แƒ›แƒ˜แƒ˜แƒฆแƒ

reference: แƒจแƒ”แƒ›แƒ“แƒ’แƒแƒ›แƒจแƒ˜ แƒกแƒแƒฅแƒแƒšแƒแƒฅแƒ แƒ‘แƒ˜แƒ‘แƒšแƒ˜แƒแƒ—แƒ”แƒ™แƒ แƒกแƒแƒ แƒแƒ˜แƒแƒœแƒ แƒ‘แƒ˜แƒ‘แƒšแƒ˜แƒแƒ—แƒ”แƒ™แƒแƒ“ แƒ’แƒแƒ“แƒแƒ™แƒ”แƒ—แƒ“แƒ แƒ’แƒแƒ˜แƒ–แƒแƒ แƒ“แƒ แƒฌแƒ˜แƒ’แƒœแƒแƒ“แƒ˜ แƒคแƒแƒœแƒ“แƒ˜ predicted: แƒจแƒ”แƒ›แƒ“แƒฆแƒแƒ›แƒจแƒ˜ แƒกแƒแƒฅแƒแƒšแƒแƒฅแƒ แƒ‘แƒ˜แƒ‘แƒšแƒ˜แƒแƒ—แƒ”แƒ™แƒ แƒกแƒแƒ แƒแƒ˜แƒแƒœแƒ แƒ‘แƒ˜แƒ‘แƒšแƒ˜แƒแƒ—แƒ”แƒ™แƒแƒ“ แƒ’แƒแƒ“แƒแƒ™แƒ”แƒ—แƒ แƒ’แƒแƒ˜แƒ–แƒแƒ แƒ“แƒ แƒฌแƒ˜แƒ’แƒœแƒแƒ“แƒ˜ แƒคแƒแƒ•แƒ“แƒ˜

reference: แƒแƒ‘แƒ แƒแƒ›แƒกแƒ˜ แƒ“แƒแƒฃแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ“แƒ แƒ›แƒ˜แƒ แƒแƒœแƒ“แƒแƒก แƒ“แƒ แƒแƒ แƒ˜ แƒ—แƒ•แƒ˜แƒก แƒ’แƒแƒœแƒ›แƒแƒ•แƒšแƒแƒ‘แƒแƒจแƒ˜ แƒ˜แƒกแƒ˜แƒœแƒ˜ แƒ›แƒฃแƒจแƒแƒแƒ‘แƒ“แƒœแƒ”แƒœ แƒแƒฆแƒœแƒ˜แƒจแƒœแƒฃแƒšแƒ˜ แƒกแƒชแƒ”แƒœแƒ˜แƒก แƒ—แƒแƒœแƒ›แƒฎแƒšแƒ”แƒ‘ แƒ›แƒ”แƒšแƒแƒ“แƒ˜แƒแƒ–แƒ” predicted: แƒแƒ‘แƒ แƒแƒ›แƒจแƒ˜ แƒ“แƒ แƒฃแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ“แƒ แƒ›แƒ˜แƒ แƒแƒœแƒ“แƒ”แƒก แƒ“แƒ แƒแƒ แƒ˜แƒ—แƒ•แƒ˜แƒก แƒ’แƒแƒœแƒ›แƒแƒ•แƒšแƒแƒ‘แƒแƒจแƒ˜ แƒ˜แƒกแƒ˜แƒœแƒ˜ แƒ›แƒฃแƒจแƒแƒแƒ‘แƒ“แƒœแƒ”แƒœแƒ แƒแƒฆแƒœแƒ˜แƒจแƒœแƒฃแƒšแƒ˜แƒก แƒฉแƒ”แƒœแƒ˜แƒก แƒ›แƒ—แƒแƒ›แƒฎแƒšแƒ”แƒ•แƒ˜แƒ— แƒ›แƒ”แƒšแƒแƒ“แƒ˜แƒแƒจแƒ˜

reference: แƒแƒ›แƒŸแƒแƒ›แƒแƒ“ แƒ—แƒ”แƒ›แƒ—แƒ แƒžแƒแƒšแƒแƒขแƒ˜แƒก แƒแƒžแƒแƒ–แƒ˜แƒชแƒ˜แƒ˜แƒก แƒšแƒ˜แƒ“แƒ”แƒ แƒ˜แƒ แƒšแƒ”แƒ˜แƒ‘แƒแƒ แƒ˜แƒกแƒขแƒฃแƒšแƒ˜ แƒžแƒแƒ แƒขแƒ˜แƒ˜แƒก แƒšแƒ˜แƒ“แƒ”แƒ แƒ˜ แƒฏแƒ”แƒ แƒ”แƒ›แƒ˜ แƒ™แƒแƒ แƒ‘แƒ˜แƒœแƒ˜ predicted: แƒแƒ›แƒŸแƒแƒ›แƒแƒ“ แƒ—แƒ”แƒ›แƒ—แƒ แƒžแƒแƒšแƒแƒขแƒ˜แƒก แƒแƒžแƒแƒ–แƒ˜แƒชแƒ˜แƒ˜แƒก แƒšแƒ˜แƒ“แƒ”แƒ แƒ˜แƒ แƒšแƒ”แƒ˜แƒ‘แƒฃแƒ แƒ˜แƒกแƒขแƒฃแƒšแƒ˜ แƒžแƒแƒ แƒขแƒ˜แƒ˜แƒก แƒšแƒ˜แƒ“แƒ”แƒ แƒ˜ แƒฏแƒ”แƒ แƒ”แƒ›แƒ˜ แƒ™แƒแƒ แƒ•แƒ˜แƒœแƒ˜

reference: แƒแƒ แƒ˜ predicted: แƒแƒ แƒ˜

reference: แƒ›แƒแƒก แƒจแƒ”แƒ›แƒ“แƒ”แƒ’ แƒ˜แƒ’แƒ˜ แƒ™แƒแƒšแƒ”แƒฅแƒขแƒ˜แƒ•แƒ˜แƒก แƒ›แƒฃแƒ“แƒ›แƒ˜แƒ•แƒ˜ แƒฌแƒ”แƒ•แƒ แƒ˜แƒ predicted: แƒ›แƒแƒก แƒจแƒ”แƒ›แƒ“แƒ”แƒ’ แƒ˜แƒ’แƒ˜ แƒ™แƒแƒšแƒ”แƒฅแƒขแƒ˜แƒ•แƒ˜แƒก แƒคแƒฃแƒ“ แƒ›แƒ˜แƒ•แƒ˜ แƒฌแƒ”แƒ•แƒ แƒ˜แƒ

reference: แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒฃแƒš แƒคแƒ˜แƒšแƒแƒกแƒแƒคแƒ˜แƒแƒก แƒจแƒ”แƒ˜แƒซแƒšแƒ”แƒ‘แƒ แƒ›แƒ˜แƒ•แƒแƒ™แƒฃแƒ—แƒ•แƒœแƒแƒ— แƒ แƒฃแƒกแƒ”แƒ—แƒ˜แƒก แƒกแƒแƒ–แƒแƒ’แƒแƒ“แƒ แƒ›แƒแƒฆแƒ•แƒแƒฌแƒ” แƒฐแƒ”แƒ˜แƒ“แƒแƒ  แƒฏแƒ”แƒ›แƒแƒšแƒ˜ predicted: แƒแƒ–แƒ”แƒ แƒ’แƒ•แƒแƒ˜แƒฏแƒแƒœแƒแƒš แƒคแƒ˜แƒšแƒแƒกแƒแƒคแƒ˜แƒแƒก แƒจแƒ”แƒ˜แƒซแƒšแƒ”แƒ‘แƒ แƒ›แƒ˜แƒ•แƒแƒ™แƒฃแƒ—แƒ•แƒœแƒแƒ— แƒ แƒฃแƒกแƒ”แƒ—แƒ˜แƒก แƒกแƒแƒ–แƒแƒ’แƒแƒ“แƒ แƒ›แƒแƒฆแƒ•แƒแƒฌแƒ” แƒฐแƒ”แƒ˜แƒ“แƒแƒ  แƒฏแƒ”แƒ›แƒแƒšแƒ˜

reference: แƒ‘แƒ แƒแƒœแƒฅแƒกแƒจแƒ˜ แƒฏแƒ”แƒ แƒแƒ›แƒ˜แƒก แƒแƒ•แƒ”แƒœแƒ˜แƒฃ แƒฐแƒงแƒแƒคแƒก แƒ’แƒแƒ›แƒญแƒแƒš แƒฅแƒฃแƒฉแƒ”แƒ‘แƒก แƒแƒฆแƒ›แƒแƒกแƒแƒ•แƒšแƒ”แƒ— แƒ“แƒ แƒ“แƒแƒกแƒแƒ•แƒšแƒ”แƒ— แƒœแƒแƒฌแƒ˜แƒšแƒ”แƒ‘แƒแƒ“ predicted: แƒ แƒแƒœแƒ’แƒจแƒ˜ แƒ“แƒ”แƒ แƒแƒ›แƒ˜แƒฌ แƒแƒ•แƒ”แƒœแƒ˜แƒš แƒžแƒแƒคแƒก แƒ’แƒแƒ› แƒ“แƒแƒšแƒคแƒฃแƒ แƒฅแƒ”แƒ‘แƒก แƒแƒฆแƒ›แƒแƒกแƒแƒ•แƒšแƒ”แƒ— แƒ“แƒ แƒ“แƒแƒกแƒแƒ•แƒšแƒ”แƒ— แƒœแƒแƒฌแƒ˜แƒšแƒ”แƒ‘แƒแƒ“

reference: แƒฐแƒแƒ”แƒ แƒ˜ แƒแƒ แƒ˜แƒก แƒŸแƒแƒœแƒ’แƒ‘แƒแƒ“แƒ˜แƒก แƒ˜แƒก แƒซแƒ˜แƒ แƒ˜แƒ—แƒแƒ“แƒ˜ แƒฌแƒงแƒแƒ แƒ แƒ แƒแƒ›แƒ”แƒšแƒกแƒแƒช แƒกแƒแƒญแƒ˜แƒ แƒแƒ”แƒ‘แƒก แƒงแƒ•แƒ”แƒšแƒ แƒชแƒแƒชแƒฎแƒแƒšแƒ˜ แƒแƒ แƒ’แƒแƒœแƒ˜แƒ–แƒ›แƒ˜ predicted: แƒแƒ แƒ˜ แƒแƒ แƒ˜แƒก แƒฏแƒแƒ›แƒฃแƒ‘แƒแƒ“แƒ”แƒกแƒ˜แƒก แƒซแƒ˜แƒ แƒ˜แƒ—แƒแƒ“แƒ˜ แƒฌแƒงแƒแƒ แƒ แƒ แƒแƒ›แƒ”แƒšแƒกแƒแƒช แƒกแƒแƒญแƒ˜แƒ แƒแƒแƒ”แƒ‘แƒก แƒงแƒ•แƒ”แƒšแƒ แƒชแƒแƒชแƒฎแƒแƒšแƒ˜ แƒแƒ แƒ’แƒแƒœแƒ˜แƒ–แƒ›แƒ˜

reference: แƒฏแƒ’แƒฃแƒคแƒ˜ แƒฃแƒ›แƒ”แƒขแƒ”แƒกแƒฌแƒ˜แƒšแƒแƒ“ แƒแƒกแƒ แƒฃแƒšแƒ”แƒ‘แƒก แƒžแƒแƒžแƒ›แƒฃแƒกแƒ˜แƒ™แƒ˜แƒก แƒŸแƒแƒœแƒ แƒ˜แƒก แƒกแƒ˜แƒ›แƒฆแƒ”แƒ แƒ”แƒ‘แƒก predicted: แƒฏแƒ’แƒฃแƒคแƒ˜แƒฃแƒ›แƒ”แƒขแƒ”แƒกแƒฌแƒ”แƒ•แƒแƒ“ แƒแƒกแƒ แƒฃแƒšแƒ”แƒ‘แƒก แƒžแƒแƒžแƒœแƒฃแƒกแƒ˜แƒ™แƒ˜แƒก แƒŸแƒแƒœแƒ แƒ˜แƒก แƒกแƒ˜แƒ›แƒ แƒ”แƒ แƒ”แƒ‘แƒก

reference: แƒ‘แƒแƒ‘แƒ˜แƒšแƒ˜แƒœแƒ แƒ›แƒฃแƒ“แƒ›แƒ˜แƒ•แƒแƒ“ แƒชแƒ“แƒ˜แƒšแƒแƒ‘แƒ“แƒ แƒจแƒ”แƒกแƒแƒซแƒšแƒ”แƒ‘แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜แƒก แƒคแƒแƒ แƒ’แƒšแƒ”แƒ‘แƒจแƒ˜ แƒ›แƒ˜แƒ”แƒฆแƒ แƒชแƒแƒ“แƒœแƒ แƒ“แƒ แƒแƒฎแƒแƒšแƒ˜ แƒ˜แƒœแƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ predicted: แƒ‘แƒแƒ‘แƒ˜แƒšแƒ˜แƒœแƒ แƒ›แƒฃแƒ“แƒ›แƒ˜แƒ•แƒ แƒชแƒ“แƒ˜แƒšแƒแƒ‘แƒ“แƒ แƒจแƒ”แƒกแƒแƒซแƒšแƒ”แƒ‘แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜แƒก แƒคแƒแƒ แƒ’แƒšแƒ”แƒ‘แƒจแƒ˜ แƒ›แƒ˜แƒ˜แƒฆแƒ แƒชแƒแƒขแƒœแƒ แƒ“แƒ แƒแƒฎแƒแƒšแƒ˜ แƒ˜แƒœแƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ

reference: แƒ›แƒ แƒ”แƒ•แƒšแƒ˜แƒก แƒ แƒฌแƒ›แƒ”แƒœแƒ˜แƒ— แƒ แƒแƒ›แƒ”แƒšแƒ˜ แƒฏแƒ’แƒฃแƒคแƒ˜แƒช แƒ’แƒแƒ˜แƒ›แƒแƒ แƒฏแƒ•แƒ”แƒ‘แƒ“แƒ แƒ›แƒ—แƒ”แƒšแƒ˜ แƒฌแƒšแƒ˜แƒก แƒ›แƒแƒœแƒซแƒ˜แƒšแƒ–แƒ” แƒกแƒ˜แƒฃแƒฎแƒ•แƒ” แƒ“แƒ แƒ‘แƒแƒ แƒแƒฅแƒ แƒแƒ  แƒ›แƒแƒแƒ™แƒšแƒ“แƒ”แƒ‘แƒแƒ“แƒ predicted: แƒ›แƒ แƒ”แƒ•แƒ แƒ˜แƒก แƒ แƒฌแƒ›แƒ”แƒœแƒ˜แƒ— แƒ แƒแƒ›แƒ”แƒšแƒ˜แƒฏแƒ’แƒฃแƒคแƒ˜แƒก แƒ’แƒแƒ˜แƒ›แƒแƒ แƒฏแƒ•แƒ”แƒ‘แƒ“แƒ แƒ›แƒ—แƒ”แƒšแƒ˜แƒญแƒšแƒ˜แƒก แƒ›แƒแƒœแƒซแƒ˜แƒšแƒ–แƒ แƒกแƒ˜แƒฃแƒงแƒ•แƒ”แƒขแƒแƒ‘แƒแƒ แƒแƒฅแƒ แƒแƒ  แƒ›แƒแƒแƒ™แƒšแƒ“แƒ”แƒ‘แƒแƒ“แƒ

reference: แƒœแƒ˜แƒœแƒ แƒฉแƒฎแƒ”แƒ˜แƒซแƒ”แƒก แƒ’แƒแƒœแƒกแƒแƒ™แƒฃแƒ—แƒ แƒ”แƒ‘แƒฃแƒšแƒ˜ แƒฆแƒ•แƒแƒฌแƒšแƒ˜ แƒ›แƒ˜แƒฃแƒซแƒฆแƒ•แƒ˜แƒก แƒฅแƒฃแƒ—แƒแƒ˜แƒกแƒ˜แƒกแƒ แƒ“แƒ แƒ แƒฃแƒกแƒ—แƒแƒ•แƒ”แƒšแƒ˜แƒก แƒ—แƒ”แƒแƒขแƒ แƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒ›แƒแƒฅแƒ›แƒ”แƒ“แƒ”แƒ‘แƒ˜แƒ— แƒชแƒฎแƒแƒ•แƒ แƒ”แƒ‘แƒแƒจแƒ˜ predicted: แƒ›แƒ˜แƒœแƒ แƒฉแƒฎแƒ”แƒ˜แƒซแƒ”แƒก แƒ’แƒแƒœแƒกแƒแƒ™แƒฃแƒ—แƒ แƒ”แƒ‘แƒฃแƒšแƒ˜ แƒฆแƒแƒ•แƒแƒฌแƒšแƒ˜ แƒ›แƒ˜แƒแƒชแƒฎแƒ•แƒ˜แƒก แƒฅแƒฃแƒ—แƒแƒ˜แƒกแƒ˜แƒกแƒ แƒ“แƒ แƒ แƒฃแƒกแƒ—แƒแƒ•แƒ”แƒšแƒ˜แƒก แƒ—แƒ”แƒแƒขแƒ แƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒ›แƒแƒฅแƒ›แƒ”แƒ“แƒ”แƒ‘แƒ˜แƒ— แƒชแƒฎแƒแƒ•แƒ แƒ”แƒ‘แƒแƒจแƒ˜

reference: แƒ˜แƒ’แƒ˜ แƒกแƒแƒ›แƒ˜ แƒ“แƒ˜แƒแƒšแƒ”แƒฅแƒขแƒ˜แƒกแƒ’แƒแƒœ แƒจแƒ”แƒ“แƒ’แƒ”แƒ‘แƒ predicted: แƒ˜แƒ’แƒ˜ แƒกแƒแƒ›แƒ˜ แƒ“แƒ˜แƒแƒšแƒ”แƒ—แƒ˜แƒก แƒ’แƒแƒœ แƒจแƒ”แƒ“แƒ’แƒ”แƒ‘แƒ

reference: แƒคแƒแƒ แƒ›แƒ˜แƒ— แƒกแƒ˜แƒ แƒแƒฅแƒšแƒ”แƒ›แƒ”แƒ‘แƒก แƒฌแƒแƒแƒ’แƒ•แƒแƒœแƒแƒœ predicted: แƒแƒ›แƒ˜แƒชแƒ˜ แƒ แƒแƒฅแƒšแƒ”แƒ›แƒ”แƒ‘แƒก แƒแƒแƒ’แƒ•แƒแƒœแƒแƒ›

reference: แƒ“แƒแƒœแƒ˜ แƒ“แƒแƒ˜แƒ‘แƒแƒ“แƒ แƒ™แƒแƒšแƒฃแƒ›แƒ‘แƒฃแƒกแƒจแƒ˜ แƒแƒฐแƒแƒ˜แƒแƒจแƒ˜ predicted: แƒ“แƒแƒœแƒ˜ แƒ“แƒแƒ˜แƒ‘แƒแƒแƒ“แƒ แƒ™แƒแƒšแƒฃแƒ›แƒ‘แƒฃแƒกแƒจแƒ˜ แƒแƒฎแƒ•แƒแƒ˜แƒแƒจแƒ˜

reference: แƒ›แƒจแƒ”แƒœแƒ”แƒ‘แƒšแƒแƒ‘แƒ˜แƒกแƒแƒ—แƒ•แƒ˜แƒก แƒ’แƒแƒ›แƒแƒ˜แƒงแƒ แƒแƒ“แƒ’แƒ˜แƒšแƒ˜ แƒงแƒแƒคแƒ˜แƒšแƒ˜ แƒแƒ”แƒ แƒแƒžแƒแƒ แƒขแƒ˜แƒก แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜ predicted: แƒจแƒ”แƒœแƒ”แƒ‘แƒšแƒแƒ‘แƒ˜แƒกแƒแƒ—แƒ•แƒ˜แƒก แƒ’แƒแƒ›แƒแƒ˜แƒงแƒ แƒแƒ“แƒ’แƒ˜แƒšแƒ˜ แƒงแƒแƒคแƒ˜แƒšแƒ˜ แƒแƒ”แƒ แƒแƒžแƒแƒ แƒขแƒ˜แƒก แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜



## Evaluation

The model can be evaluated as follows on the Georgian test data of Common Voice.

```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric

import numpy as np
import re
import string

from normalizer import normalizer


def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)

    batch["speech"] = speech_array
    return batch


def predict(batch):
    features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)

    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits 
        
    pred_ids = torch.argmax(logits, dim=-1)

    batch["predicted"] = processor.batch_decode(pred_ids)[0]
    return batch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)

dataset = load_dataset("common_voice", "ka", split="test")
dataset = dataset.map(
    normalizer, 
    fn_kwargs={"remove_extra_space": True},
    remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)

dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)

wer = load_metric("wer")

print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))

Test Result:

  • WER: 43.86%

Training & Report

The Common Voice train, validation datasets were used for training.

You can see the training states here

The script used for training can be found here

Questions?

Post a Github issue on the Wav2Vec repo.