m-luebbers's picture
Vanilla PPO agent 500k
6c9a3d5
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7feebf588170>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feebf588200>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feebf588290>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feebf588320>",
"_build": "<function ActorCriticPolicy._build at 0x7feebf5883b0>",
"forward": "<function ActorCriticPolicy.forward at 0x7feebf588440>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feebf5884d0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7feebf588560>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feebf5885f0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feebf588680>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7feebf588710>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7feebf5de210>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 524288,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652208976.893236,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABPPKb6aQoE+Od7BPQ3kbL7wuP87LYVevQAAAAAAAAAAmnyxvFwPbjkXhTM6s+ybtRxhcLuIxFa5AACAPwAAgD+aiOk8lnq4PxK5Mz+ATZg+4g+vvPNUKr0AAAAAAAAAANqVvz3DvQu6ZpzLur6kN7XaCJu7nLGqNAAAAAAAAIA/On9cPt/v3jwGukk6WVgPOcuAdj7CxpC5AACAPwAAgD+TWUS+01KPPwjP6L5x/+K+wthVvkx9C74AAAAAAAAAAHogXz6DEma8c9++OobCu7iUM9C9eg3nuQAAgD8AAIA/QE2RvXPoUD9NKR+9nUnmvqejdb3Kx0k9AAAAAAAAAABg3p0+VpwqPxg+SD03Mp2+oAIiPiqoN70AAAAAAAAAAINGhj69/iO9rZogOwXf5Lmn3ZG+zvZZugAAgD8AAIA/mqlzvpTiNb1IJAm7V+S+uaEjnT6yV4Y6AACAPwAAgD/Nxrk8IeqtP0hCDj9kmR6/SbllvNSkJbwAAAAAAAAAAOaahj3bykI/u5T/PS+0wb7TDD490icbvQAAAAAAAAAAmpSevMMVIjmA/OI6zbjXNati8box4we6AACAPwAAgD8zc4y7rof1uGqf/rlLfnQ1bEmbOwrC6LQAAIA/AACAPzOblbwKhzu5EGTUNmxKAjKV9k667fP8tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1jpxOd6oZECUhpRSlIwBbJRN6AOMAXSUR0CUPP9bor4GdX2UKGgGaAloD0MI2BAcl3GfYkCUhpRSlGgVTegDaBZHQJRCIPd2xIJ1fZQoaAZoCWgPQwi31awzvv8XQJSGlFKUaBVL+WgWR0CUQowJw84hdX2UKGgGaAloD0MIS8rd5/j/ZECUhpRSlGgVTegDaBZHQJRD4XXRPXV1fZQoaAZoCWgPQwgld9hEZphkQJSGlFKUaBVN6ANoFkdAlEkWmgrYoXV9lChoBmgJaA9DCNdppKXyoFxAlIaUUpRoFU3oA2gWR0CUSSm29crzdX2UKGgGaAloD0MIjlvMz438YECUhpRSlGgVTegDaBZHQJRNVfE4vOB1fZQoaAZoCWgPQwjJkjmWd2U5QJSGlFKUaBVNFQFoFkdAlFL9B0IToXV9lChoBmgJaA9DCG6kbJG0TmhAlIaUUpRoFU3oA2gWR0CUViSJTER8dX2UKGgGaAloD0MIK061FmZRXkCUhpRSlGgVTegDaBZHQJRaAcHWz4V1fZQoaAZoCWgPQwjjUSrhCahfQJSGlFKUaBVN6ANoFkdAlF5higCfYnV9lChoBmgJaA9DCPKyJhb4BkNAlIaUUpRoFU0BAWgWR0CUYydQO4G2dX2UKGgGaAloD0MIhzWVRWE2YkCUhpRSlGgVTegDaBZHQJTTvifg75p1fZQoaAZoCWgPQwhv2LYos8FdQJSGlFKUaBVN6ANoFkdAlNQzTz/ZNHV9lChoBmgJaA9DCAZLdQGvFGRAlIaUUpRoFU3oA2gWR0CU1Vri2lVMdX2UKGgGaAloD0MITtNnB1wiZUCUhpRSlGgVTegDaBZHQJTWN+uvECN1fZQoaAZoCWgPQwiRYKqZNf5pQJSGlFKUaBVNfAJoFkdAlNhpElVtGnV9lChoBmgJaA9DCB+eJciIEWFAlIaUUpRoFU3oA2gWR0CU3L/8EV32dX2UKGgGaAloD0MIozuInSn3YECUhpRSlGgVTegDaBZHQJTe+NJe3QV1fZQoaAZoCWgPQwj4UnjQ7IZcQJSGlFKUaBVN6ANoFkdAlOHMYVIqb3V9lChoBmgJaA9DCCMT8GskvGtAlIaUUpRoFU3GA2gWR0CU5vEEC/47dX2UKGgGaAloD0MIXoB9dOrDbkCUhpRSlGgVTSQBaBZHQJTneITGo751fZQoaAZoCWgPQwizCwbXXEVmQJSGlFKUaBVN6ANoFkdAlOeXwgDA8HV9lChoBmgJaA9DCPj9mxenUG9AlIaUUpRoFU1EAmgWR0CU6UB7/n4gdX2UKGgGaAloD0MIMiHmkiqkbkCUhpRSlGgVTcYDaBZHQJTr4H/tICl1fZQoaAZoCWgPQwiuLTwvFYNgQJSGlFKUaBVN6ANoFkdAlPI/+wTufHV9lChoBmgJaA9DCMhhMH/Fr3JAlIaUUpRoFU1MAmgWR0CU+O42S+xodX2UKGgGaAloD0MIr7SM1HvtZECUhpRSlGgVTegDaBZHQJT7tr8BMi91fZQoaAZoCWgPQwhjfm5oSvVhQJSGlFKUaBVN6ANoFkdAlP/8wlByCHV9lChoBmgJaA9DCMb83NAUlGJAlIaUUpRoFU3oA2gWR0CVCjof0VafdX2UKGgGaAloD0MIdLaA0HruXkCUhpRSlGgVTegDaBZHQJUTZ6dDpkh1fZQoaAZoCWgPQwhV+DO8WQRhQJSGlFKUaBVN6ANoFkdAlRPXxri2lXV9lChoBmgJaA9DCNs1Ia0xCV9AlIaUUpRoFU3oA2gWR0CVGEVEuxr0dX2UKGgGaAloD0MIvD/eq1ZOYkCUhpRSlGgVTegDaBZHQJUcwAdXDFZ1fZQoaAZoCWgPQwjn4JnQJJNhQJSGlFKUaBVN6ANoFkdAlR7Lcj7hvXV9lChoBmgJaA9DCOjaF9ALsGBAlIaUUpRoFU3oA2gWR0CVIXdxyXD4dX2UKGgGaAloD0MIpaFGIUmNYUCUhpRSlGgVTegDaBZHQJUmFkQPI4l1fZQoaAZoCWgPQwh9QQsJGIxbQJSGlFKUaBVN6ANoFkdAlSaDOcDr7nV9lChoBmgJaA9DCFa6u86GkmNAlIaUUpRoFU3oA2gWR0CVJqFN+LFXdX2UKGgGaAloD0MIMbPPYxStZ0CUhpRSlGgVTegDaBZHQJUoCx/ustF1fZQoaAZoCWgPQwjuXBjpxZtjQJSGlFKUaBVN6ANoFkdAlSphUrCm/HV9lChoBmgJaA9DCMk9Xd0xoHBAlIaUUpRoFU2lAWgWR0CVKtv0RODbdX2UKGgGaAloD0MIW7BUF3BXY0CUhpRSlGgVTegDaBZHQJUv6FGoaUB1fZQoaAZoCWgPQwjLoUW28/djQJSGlFKUaBVN6ANoFkdAlTW8sYl6aHV9lChoBmgJaA9DCMwJ2uTwbWJAlIaUUpRoFU3oA2gWR0CVOCHT7VJ+dX2UKGgGaAloD0MIR8uBHmqBb0CUhpRSlGgVTZECaBZHQJU46LWI42l1fZQoaAZoCWgPQwhiSbn7nDxiQJSGlFKUaBVN6ANoFkdAlTvVdPci4nV9lChoBmgJaA9DCLOVl/xPtmpAlIaUUpRoFU3SAWgWR0CVQ6efqX4TdX2UKGgGaAloD0MItg95y1WAbkCUhpRSlGgVTUcBaBZHQJVEieiBXjl1fZQoaAZoCWgPQwgDP6phv4VfQJSGlFKUaBVN6ANoFkdAlUW9jCpFTnV9lChoBmgJaA9DCM6pZACoIhBAlIaUUpRoFUvraBZHQJVHQNRWLgp1fZQoaAZoCWgPQwhOK4VArnBvQJSGlFKUaBVNhQJoFkdAlbNJ8F6iTXV9lChoBmgJaA9DCLTIdr6fWW5AlIaUUpRoFU0SA2gWR0CVs/AkLQXzdX2UKGgGaAloD0MIaahRSDJ/bUCUhpRSlGgVTV4CaBZHQJW2FuAI6bR1fZQoaAZoCWgPQwiHpuz0A9duQJSGlFKUaBVNaQJoFkdAlbdPYBeXzHV9lChoBmgJaA9DCFH1K52PsnBAlIaUUpRoFU3LAmgWR0CVuBP6be/IdX2UKGgGaAloD0MIpI6Oq5GKX0CUhpRSlGgVTegDaBZHQJW5zAdn0051fZQoaAZoCWgPQwhcdoh/2CI2QJSGlFKUaBVNCgFoFkdAlbqLTc6/7HV9lChoBmgJaA9DCDz2s1hKHHBAlIaUUpRoFU1eA2gWR0CVuvB2wFC+dX2UKGgGaAloD0MI+5EiMix1bECUhpRSlGgVTeIBaBZHQJW8+LQ5WBB1fZQoaAZoCWgPQwik+s4vyt5kQJSGlFKUaBVN6ANoFkdAlb2Xwb2lEnV9lChoBmgJaA9DCElnYORlsVtAlIaUUpRoFU3oA2gWR0CVxsX/YJ3QdX2UKGgGaAloD0MIUUoIVtUyb0CUhpRSlGgVTVoBaBZHQJXNVp5/smh1fZQoaAZoCWgPQwjMC7CPTqtwQJSGlFKUaBVNNwFoFkdAlc45QUHpr3V9lChoBmgJaA9DCHVbIhdckHBAlIaUUpRoFU2fAWgWR0CV0d752yLRdX2UKGgGaAloD0MIuaXVkHhjcUCUhpRSlGgVTd8BaBZHQJXSbo+wC8x1fZQoaAZoCWgPQwj6QV2kUG1kQJSGlFKUaBVN6ANoFkdAldbFSwW30HV9lChoBmgJaA9DCBB1H4DUz25AlIaUUpRoFU0lA2gWR0CV2MyquKXOdX2UKGgGaAloD0MIAb7bvPH6bECUhpRSlGgVTR4DaBZHQJXZdYJVsDZ1fZQoaAZoCWgPQwgBv0aSoFtvQJSGlFKUaBVNdgFoFkdAldv2KZUkwHV9lChoBmgJaA9DCDlkA+ni0mNAlIaUUpRoFU3oA2gWR0CV3Cpz90ihdX2UKGgGaAloD0MI0LhwICRTQUCUhpRSlGgVS+NoFkdAld5+jh1klXV9lChoBmgJaA9DCNcYdELoLmRAlIaUUpRoFU3oA2gWR0CV5hd5IH1OdX2UKGgGaAloD0MIE9OFWD2+cECUhpRSlGgVTd8CaBZHQJXmiRJVbRp1fZQoaAZoCWgPQwjKGB9mL+ZtQJSGlFKUaBVNIwFoFkdAlec0Ao5PuXV9lChoBmgJaA9DCHYXKCkw925AlIaUUpRoFU2CAWgWR0CV50VAzHjqdX2UKGgGaAloD0MIR5IgXAFRNkCUhpRSlGgVS+NoFkdAlekS8zyjHnV9lChoBmgJaA9DCEt0llkEB2BAlIaUUpRoFU3oA2gWR0CV6tJ2+wkgdX2UKGgGaAloD0MIfcucLos8Y0CUhpRSlGgVTegDaBZHQJXrVmDlHSZ1fZQoaAZoCWgPQwivCP63koVlQJSGlFKUaBVN6ANoFkdAle0qnFYMfHV9lChoBmgJaA9DCPkP6bcv1mBAlIaUUpRoFU3oA2gWR0CV7istCiRGdX2UKGgGaAloD0MIQuxMoTMmcECUhpRSlGgVTU4CaBZHQJXumR8twrF1fZQoaAZoCWgPQwjbFI+LaghfQJSGlFKUaBVN6ANoFkdAlfA1ZowmFHV9lChoBmgJaA9DCGe0VUlkZm1AlIaUUpRoFU3oAmgWR0CV9W3u/k/9dX2UKGgGaAloD0MIyXTo9DyZcECUhpRSlGgVTRQCaBZHQJYGOD5CWu51fZQoaAZoCWgPQwhFLc2tkNVvQJSGlFKUaBVNygFoFkdAlgZNvbXYlXV9lChoBmgJaA9DCLqGGRoPE3BAlIaUUpRoFU2YAWgWR0CWB2CfYjB3dX2UKGgGaAloD0MIPpepSXAVbkCUhpRSlGgVTSkCaBZHQJYHkhA4XGh1fZQoaAZoCWgPQwglBoGVQ/RvQJSGlFKUaBVN1QJoFkdAlhF2jCYTkHV9lChoBmgJaA9DCAqi7gMQLGFAlIaUUpRoFU3oA2gWR0CWE1tCzC1rdX2UKGgGaAloD0MIsyRATa1FZUCUhpRSlGgVTegDaBZHQJYUIXzlLe11fZQoaAZoCWgPQwiB7PXuD2diQJSGlFKUaBVN6ANoFkdAlhbU0rK/23V9lChoBmgJaA9DCGFSfHzCC2NAlIaUUpRoFU3oA2gWR0CWGa15jYqYdX2UKGgGaAloD0MIZ/M4DCZgcECUhpRSlGgVTcsCaBZHQJYb211GLDR1fZQoaAZoCWgPQwjoFORnI1lgQJSGlFKUaBVN6ANoFkdAliEiNbTts3V9lChoBmgJaA9DCKGEmbb/MHFAlIaUUpRoFU3NAWgWR0CWIdgR9PUKdX2UKGgGaAloD0MISS2UTE7FSECUhpRSlGgVS8hoFkdAliJfuCwr2HV9lChoBmgJaA9DCAOy17s/IWBAlIaUUpRoFU3oA2gWR0CWJBIMSbpedX2UKGgGaAloD0MI7s9FQ8ZTPkCUhpRSlGgVS9ZoFkdAliXTZQHiWHV9lChoBmgJaA9DCAsOL4hID2RAlIaUUpRoFU3oA2gWR0CWJdQTVUdadWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 170,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}