dododododo commited on
Commit
5c6a65a
1 Parent(s): 6b357ce

Delete tokenization_baichuan.py

Browse files
Files changed (1) hide show
  1. tokenization_baichuan.py +0 -253
tokenization_baichuan.py DELETED
@@ -1,253 +0,0 @@
1
- # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
-
3
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
- #
5
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
- # and OPT implementations in this library. It has been modified from its
7
- # original forms to accommodate minor architectural differences compared
8
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
-
22
- import os
23
- from shutil import copyfile
24
- from typing import Any, Dict, List, Optional, Tuple
25
-
26
- import sentencepiece as spm
27
-
28
- from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
- from transformers.utils import logging
30
-
31
-
32
- logger = logging.get_logger(__name__)
33
-
34
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
-
36
- PRETRAINED_VOCAB_FILES_MAP = {
37
- "vocab_file": {},
38
- "tokenizer_file": {},
39
- }
40
- PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
-
42
-
43
- class BaichuanTokenizer(PreTrainedTokenizer):
44
- """
45
- Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
-
47
- Args:
48
- vocab_file (`str`):
49
- Path to the vocabulary file.
50
- """
51
-
52
- vocab_files_names = VOCAB_FILES_NAMES
53
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
- max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
- model_input_names = ["input_ids", "attention_mask"]
56
-
57
- def __init__(
58
- self,
59
- vocab_file,
60
- unk_token="<unk>",
61
- bos_token="<s>",
62
- eos_token="</s>",
63
- pad_token=None,
64
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
- add_bos_token=True,
66
- add_eos_token=False,
67
- clean_up_tokenization_spaces=False,
68
- **kwargs,
69
- ):
70
- self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
- bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
- eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
- unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
- pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
-
76
- self.vocab_file = vocab_file
77
- self.add_bos_token = add_bos_token
78
- self.add_eos_token = add_eos_token
79
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
80
- self.sp_model.Load(vocab_file)
81
-
82
- super().__init__(
83
- bos_token=bos_token,
84
- eos_token=eos_token,
85
- unk_token=unk_token,
86
- pad_token=pad_token,
87
- add_bos_token=add_bos_token,
88
- add_eos_token=add_eos_token,
89
- sp_model_kwargs=self.sp_model_kwargs,
90
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
91
- **kwargs,
92
- )
93
-
94
- def __getstate__(self):
95
- state = self.__dict__.copy()
96
- state["sp_model"] = None
97
- return state
98
-
99
- def __setstate__(self, d):
100
- self.__dict__ = d
101
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
102
- self.sp_model.Load(self.vocab_file)
103
-
104
- @property
105
- def vocab_size(self):
106
- """Returns vocab size"""
107
- return self.sp_model.get_piece_size()
108
-
109
- def get_vocab(self):
110
- """Returns vocab as a dict"""
111
- vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
112
- vocab.update(self.added_tokens_encoder)
113
- return vocab
114
-
115
- def _tokenize(self, text):
116
- """Returns a tokenized string."""
117
- return self.sp_model.encode(text, out_type=str)
118
-
119
- def _convert_token_to_id(self, token):
120
- """Converts a token (str) in an id using the vocab."""
121
- return self.sp_model.piece_to_id(token)
122
-
123
- def _convert_id_to_token(self, index):
124
- """Converts an index (integer) in a token (str) using the vocab."""
125
- token = self.sp_model.IdToPiece(index)
126
- return token
127
-
128
- def convert_tokens_to_string(self, tokens):
129
- """Converts a sequence of tokens (string) in a single string."""
130
- current_sub_tokens = []
131
- out_string = ""
132
- prev_is_special = False
133
- for i, token in enumerate(tokens):
134
- # make sure that special tokens are not decoded using sentencepiece model
135
- if token in self.all_special_tokens:
136
- if not prev_is_special and i != 0:
137
- out_string += " "
138
- out_string += self.sp_model.decode(current_sub_tokens) + token
139
- prev_is_special = True
140
- current_sub_tokens = []
141
- else:
142
- current_sub_tokens.append(token)
143
- prev_is_special = False
144
- out_string += self.sp_model.decode(current_sub_tokens)
145
- return out_string
146
-
147
- def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
148
- """
149
- Save the vocabulary and special tokens file to a directory.
150
-
151
- Args:
152
- save_directory (`str`):
153
- The directory in which to save the vocabulary.
154
-
155
- Returns:
156
- `Tuple(str)`: Paths to the files saved.
157
- """
158
- if not os.path.isdir(save_directory):
159
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
160
- return
161
- out_vocab_file = os.path.join(
162
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
163
- )
164
-
165
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
166
- copyfile(self.vocab_file, out_vocab_file)
167
- elif not os.path.isfile(self.vocab_file):
168
- with open(out_vocab_file, "wb") as fi:
169
- content_spiece_model = self.sp_model.serialized_model_proto()
170
- fi.write(content_spiece_model)
171
-
172
- return (out_vocab_file,)
173
-
174
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
175
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
176
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
177
-
178
- output = bos_token_id + token_ids_0 + eos_token_id
179
-
180
- if token_ids_1 is not None:
181
- output = output + bos_token_id + token_ids_1 + eos_token_id
182
-
183
- return output
184
-
185
- def get_special_tokens_mask(
186
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
187
- ) -> List[int]:
188
- """
189
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
190
- special tokens using the tokenizer `prepare_for_model` method.
191
-
192
- Args:
193
- token_ids_0 (`List[int]`):
194
- List of IDs.
195
- token_ids_1 (`List[int]`, *optional*):
196
- Optional second list of IDs for sequence pairs.
197
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
198
- Whether or not the token list is already formatted with special tokens for the model.
199
-
200
- Returns:
201
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
202
- """
203
- if already_has_special_tokens:
204
- return super().get_special_tokens_mask(
205
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
206
- )
207
-
208
- bos_token_id = [1] if self.add_bos_token else []
209
- eos_token_id = [1] if self.add_eos_token else []
210
-
211
- if token_ids_1 is None:
212
- return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
213
- return (
214
- bos_token_id
215
- + ([0] * len(token_ids_0))
216
- + eos_token_id
217
- + bos_token_id
218
- + ([0] * len(token_ids_1))
219
- + eos_token_id
220
- )
221
-
222
- def create_token_type_ids_from_sequences(
223
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
224
- ) -> List[int]:
225
- """
226
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
227
- sequence pair mask has the following format:
228
-
229
- ```
230
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
231
- | first sequence | second sequence |
232
- ```
233
-
234
- if token_ids_1 is None, only returns the first portion of the mask (0s).
235
-
236
- Args:
237
- token_ids_0 (`List[int]`):
238
- List of ids.
239
- token_ids_1 (`List[int]`, *optional*):
240
- Optional second list of IDs for sequence pairs.
241
-
242
- Returns:
243
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
244
- """
245
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
246
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
247
-
248
- output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
249
-
250
- if token_ids_1 is not None:
251
- output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
252
-
253
- return output