lzw1008 commited on
Commit
79396c0
1 Parent(s): 438235f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -35,7 +35,7 @@ All models are trained on the full AAID instruction tuning data.
35
 
36
  ## Usage
37
 
38
- You can use the Emollama-chat-7b model in your Python project with the Hugging Face Transformers library. Here is a simple example of how to load the model:
39
 
40
  ```python
41
  from transformers import AutoTokenizer, AutoModelForCausalLM
@@ -43,7 +43,7 @@ tokenizer = AutoTokenizer.from_pretrained('lzw1008/Emoopt-13b')
43
  model = AutoModelForCausalLM.from_pretrained('lzw1008/Emoopt-13b', device_map='auto')
44
  ```
45
 
46
- In this example, LlamaTokenizer is used to load the tokenizer, and LlamaForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically
47
  use the GPU if it's available.
48
 
49
  ## Prompt examples
 
35
 
36
  ## Usage
37
 
38
+ You can use the Emoopt-13b model in your Python project with the Hugging Face Transformers library. Here is a simple example of how to load the model:
39
 
40
  ```python
41
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
43
  model = AutoModelForCausalLM.from_pretrained('lzw1008/Emoopt-13b', device_map='auto')
44
  ```
45
 
46
+ In this example, AutoTokenizer is used to load the tokenizer, and AutoModelForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically
47
  use the GPU if it's available.
48
 
49
  ## Prompt examples