metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- lyhourt/clean_6
metrics:
- wer
model-index:
- name: whisper-small-clean_6-v5
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: lyhourt/clean_6
type: lyhourt/clean_6
metrics:
- name: Wer
type: wer
value: 21.24038237351364
whisper-small-clean_6-v5
This model is a fine-tuned version of openai/whisper-small on the lyhourt/clean_6 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2706
- Wer: 21.2404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1461 | 0.9452 | 500 | 0.2746 | 23.0473 |
0.0631 | 1.8904 | 1000 | 0.2693 | 21.5318 |
0.0334 | 2.8355 | 1500 | 0.2706 | 21.2404 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1