whisper-clean_4 / README.md
lyhourt's picture
End of training
b66f7f5 verified
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - lyhourt/clean_4
metrics:
  - wer
model-index:
  - name: whisper-small-clean_4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: lyhourt/clean_4
          type: lyhourt/clean_4
        metrics:
          - name: Wer
            type: wer
            value: 11.374407582938389

whisper-small-clean_4

This model is a fine-tuned version of openai/whisper-small on the lyhourt/clean_4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0801
  • Wer: 11.3744

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0466 0.3333 100 0.1170 15.9953
0.2315 1.0333 200 0.0852 12.6777
0.0031 1.3667 300 0.0801 11.3744

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1