metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1182198
- loss:CachedMultipleNegativesRankingLoss
- loss:AnglELoss
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: dog instrument toy
sentences:
- >-
VATOS 25-in-1 Mars Rover Building Kit Outer Space Explorer Educational
Construction Toy for Kids 556 Pieces Solar Powered STEM Science Building
Blocks Set, VATOS, White
- >-
Prefer Green 7 PCS Portion Control Containers Kit (with COMPLETE GUIDE &
21 DAY DAILY TRACKER & 21 DAY MEAL PLANNER & RECIPES
PDFs),Label-Coded,Multi-Color-Coded System,Perfect Size for Lose Weight,
Prefer Green, 7 PCS
- >-
Coolibar UPF 50+ Men's Women's Gannett UV Gloves - Sun Protective
(Medium- Light Blue), Coolibar, Light Blue
- source_sentence: flame decal stickers
sentences:
- >-
Tribal Flames Splash Pair - Vinyl Decal Sticker - 12" x 5" - Blue
Flames, Sticker Pimp, Blue Flames
- >-
PC Gaming Headset Headphone Hook Holder Hanger Mount, Headphones Stand
with Adjustable & Rotating Arm Clamp , Under Desk Design , Universal Fit
, Built in Cable Clip Organizer EURPMASK, EURPMASK Choose the color of
europe, Black
- >-
Quick Charge 3.0 Wall Charger, 4-Pack 18W QC 3.0 USB Charger Adapter
Fast Charging Block Compatible Wireless Charger Compatible with Samsung
Galaxy S10 S9 S8 Plus S7 S6 Edge Note 9, LG, Kindle, Tablet, HONOT,
Black
- source_sentence: 'search_query: softies women''s ultra soft marshmallow hooded lounger'
sentences:
- >-
search_document: Red-A Placemats for Dining Table Set of 6
Heat-Resistant Wipeable Table Mats for Kitchen Table Decoration
Waterproof Vinyl Placemats Easy to Clean,Black w/Brown, Red-A, Black
- >-
search_document: Softies Women's Ultra Soft Marshmallow Hooded Lounger,
Platinum, L/XL, Softies, Platinum
- >-
search_document: Ekouaer Women's Sleepwear Robe with Pockets Plus Size
Maxi Lounger Zipper Short Sleeve Bathrobe Housecoat (Black,L), Ekouaer,
Black
- source_sentence: 'search_query: wine glasses without stem'
sentences:
- >-
search_document: STAUBER Best Bulb Changer with PowerLatch Extension
Pole (Large Suction, 4 Feet), STAUBER, Large Suction
- >-
search_document: Hand Blown Italian Style Crystal Burgundy Wine Glasses
- Lead-Free Premium Crystal Clear Glass - Set of 2 - 21 Ounce - Gift-Box
for any Occasion, JBHO, Burgundy
- >-
search_document: MyGift Modern Copper Stemless Wine Glasses, Set of 4,
MyGift, Copper
- source_sentence: 'search_query: weighted blanket without glass beads'
sentences:
- >-
search_document: Eigso Women Men Spike Punk Rock Black Leather Cuff
Rivet Bracelet Bangle Adjustable Snap Button, Eigso, Black
- >-
search_document: Quility Weighted Blanket with Soft Cover - 20 lbs
Full/Queen Size Heavy Blanket for Adults - Heating & Cooling, Machine
Washable - (60" X 80") (Navy), Quility, Navy Cover + Grey Cotton Blanket
- >-
search_document: Bedsure Queen Weighted Blanket 15 Pounds - Adult
Weighted Blanket 60x80 - Soft Heavy Blanket with Breathable TPE Insert
No Glass Beads, Bedsure, Navy
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.7236
name: Cosine Accuracy
- type: dot_accuracy
value: 0.282
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.7231
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.7227
name: Euclidean Accuracy
- type: max_accuracy
value: 0.7236
name: Max Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.4912162846043421
name: Pearson Cosine
- type: spearman_cosine
value: 0.4658522123059972
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4599741171303018
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4428141949345816
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.46194545823984606
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.44478471500226807
name: Spearman Euclidean
- type: pearson_dot
value: 0.45451995456560107
name: Pearson Dot
- type: spearman_dot
value: 0.43844636325741904
name: Spearman Dot
- type: pearson_max
value: 0.4912162846043421
name: Pearson Max
- type: spearman_max
value: 0.4658522123059972
name: Spearman Max
SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the triplets and pairs datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- triplets
- pairs
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lv12/esci-nomic-embed-text-v1_5_4")
# Run inference
sentences = [
'search_query: weighted blanket without glass beads',
'search_document: Bedsure Queen Weighted Blanket 15 Pounds - Adult Weighted Blanket 60x80 - Soft Heavy Blanket with Breathable TPE Insert No Glass Beads, Bedsure, Navy',
'search_document: Quility Weighted Blanket with Soft Cover - 20 lbs Full/Queen Size Heavy Blanket for Adults - Heating & Cooling, Machine Washable - (60" X 80") (Navy), Quility, Navy Cover + Grey Cotton Blanket',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7236 |
dot_accuracy | 0.282 |
manhattan_accuracy | 0.7231 |
euclidean_accuracy | 0.7227 |
max_accuracy | 0.7236 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4912 |
spearman_cosine | 0.4659 |
pearson_manhattan | 0.46 |
spearman_manhattan | 0.4428 |
pearson_euclidean | 0.4619 |
spearman_euclidean | 0.4448 |
pearson_dot | 0.4545 |
spearman_dot | 0.4384 |
pearson_max | 0.4912 |
spearman_max | 0.4659 |
Training Details
Training Datasets
triplets
- Dataset: triplets
- Size: 684,084 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 11.1 tokens
- max: 22 tokens
- min: 17 tokens
- mean: 42.75 tokens
- max: 95 tokens
- min: 15 tokens
- mean: 43.8 tokens
- max: 127 tokens
- Samples:
anchor positive negative search_query: tarps heavy duty waterproof 8x10
search_document: 8' x 10' Super Heavy Duty 16 Mil Brown Poly Tarp Cover - Thick Waterproof, UV Resistant, Rip and Tear Proof Tarpaulin with Grommets and Reinforced Edges - by Xpose Safety, Xpose Safety, Brown
search_document: Grillkid 6'X8' 4.5 Mil Thick General Purpose Waterproof Poly Tarp, Grillkid, All Purpose
search_query: wireless keyboard without number pad
search_document: Macally 2.4G Small Wireless Keyboard - Ergonomic & Comfortable Computer Keyboard - Compact Keyboard for Laptop or Windows PC Desktop, Tablet, Smart TV - Plug & Play Mini Keyboard with 12 Hot Keys, Macally, Black
search_document: Wireless Keyboard - iClever GKA22S Rechargeable Keyboard with Number Pad, Full-Size Stainless Steel Ultra Slim Keyboard, 2.4G Stable Connection Wireless Keyboard for iMac, Mackbook, PC, Laptop, iClever, Silver
search_query: geometry earrings
search_document: Simple Stud Earrings for Women, Geometric Minimalist Stud Earring Set Tiny Circle Triangle Square Bar Stud Earrings Mini Cartilage Tragus Earrings, choice of all, B:Circle Sliver
search_document: BONALUNA Bohemian Wood And Marble Effect Oblong Shaped Drop Statement Earrings (VIVID TURQUOISE), BONALUNA, VIVID TURQUOISE
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
pairs
- Dataset: pairs
- Size: 498,114 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 6.73 tokens
- max: 33 tokens
- min: 10 tokens
- mean: 40.14 tokens
- max: 98 tokens
- min: 0.0
- mean: 0.81
- max: 1.0
- Samples:
sentence1 sentence2 score I would choose a medium weight waterproof fabric, hip length jacket or longer, long sleeves, zip front, with a hood and deep pockets with zips
ZSHOW Men's Winter Hooded Packable Down Jacket(Blue, XX-Large), ZSHOW, Blue
1.0
sequin dance costume girls
Yeahdor Big Girls' Lyrical Latin Ballet Dance Costumes Dresses Halter Sequins Irregular Tutu Skirted Leotard Dancewear Pink 12-14, Yeahdor, Pink
1.0
paint easel bulk
Artecho Artist Easel Display Easel Stand, 2 Pack Metal Tripod Stand Easel for Painting, Hold Canvas from 21" to 66", Floor and Tabletop Displaying, Painting with Portable Bag, Artecho, Black
1.0
- Loss:
AnglELoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_angle_sim" }
Evaluation Datasets
triplets
- Dataset: triplets
- Size: 10,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 11.13 tokens
- max: 23 tokens
- min: 15 tokens
- mean: 43.11 tokens
- max: 107 tokens
- min: 15 tokens
- mean: 43.56 tokens
- max: 99 tokens
- Samples:
anchor positive negative search_query: hitch fifth wheel
search_document: ENIXWILL 5th Wheel Trailer Hitch Lifting Device Bracket Pin Fit for Hitch Companion and Patriot Series Hitch, ENIXWILL, Black
search_document: ECOTRIC Fifth 5th Wheel Trailer Hitch Mount Rails and Installation Kits for Full-Size Trucks, ECOTRIC, black
search_query: dek pro
search_document: Cubiker Computer Desk 47 inch Home Office Writing Study Desk, Modern Simple Style Laptop Table with Storage Bag, Brown, Cubiker, Brown
search_document: FEZIBO Dual Motor L Shaped Electric Standing Desk, 48 Inches Stand Up Corner Desk, Home Office Sit Stand Desk with Rustic Brown Top and Black Frame, FEZIBO, Rustic Brown
search_query: 1 year baby mouth without teeth cleaner
search_document: Baby Toothbrush,Infant Toothbrush,Baby Tongue Cleaner,Infant Toothbrush,Baby Tongue Cleaner Newborn,Toothbrush Tongue Cleaner Dental Care for 0-36 Month Baby,36 Pcs + Free 4 Pcs, Babycolor, Blue
search_document: Slotic Baby Toothbrush for 0-2 Years, Safe and Sturdy, Toddler Oral Care Teether Brush, Extra Soft Bristle for Baby Teeth and Infant Gums, Dentist Recommended (4-Pack), Slotic, 4 Pack
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
pairs
- Dataset: pairs
- Size: 10,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 6.8 tokens
- max: 34 tokens
- min: 9 tokens
- mean: 39.7 tokens
- max: 101 tokens
- min: 0.0
- mean: 0.77
- max: 1.0
- Samples:
sentence1 sentence2 score outdoor ceiling fans without light
44" Plaza Industrial Indoor Outdoor Ceiling Fan with Remote Control Oil Rubbed Bronze Damp Rated for Patio Porch - Casa Vieja, Casa Vieja, No Light Kit - Bronze
1.0
bathroom cabinet
Homfa Bathroom Floor Cabinet Free Standing with Single Door Multifunctional Bathroom Storage Organizer Toiletries(Ivory White), Homfa, White
1.0
fitbit charge 3
TreasureMax Compatible with Fitbit Charge 2 Bands for Women/Men,Silicone Fadeless Pattern Printed Replacement Floral Bands for Fitbit Charge 2 HR Wristbands, TreasureMax, Paw 2
0.4
- Loss:
AnglELoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_angle_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 4gradient_accumulation_steps
: 2learning_rate
: 1e-06lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {'num_cycles': 1}warmup_ratio
: 0.01dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: 4load_best_model_at_end
: Truegradient_checkpointing
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {'num_cycles': 1}warmup_ratio
: 0.01warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: 4past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | pairs loss | triplets loss | cosine_accuracy | spearman_cosine |
---|---|---|---|---|---|---|
0.0027 | 100 | 2.4909 | - | - | - | - |
0.0054 | 200 | 2.6666 | - | - | - | - |
0.0081 | 300 | 2.76 | - | - | - | - |
0.0108 | 400 | 2.6945 | - | - | - | - |
0.0135 | 500 | 2.9113 | - | - | - | - |
0.0162 | 600 | 2.3476 | - | - | - | - |
0.0189 | 700 | 2.2818 | - | - | - | - |
0.0217 | 800 | 2.4241 | - | - | - | - |
0.0244 | 900 | 2.5126 | - | - | - | - |
0.0271 | 1000 | 2.4106 | 4.7376 | 0.8087 | 0.6993 | 0.3844 |
0.0298 | 1100 | 2.2369 | - | - | - | - |
0.0325 | 1200 | 2.0614 | - | - | - | - |
0.0352 | 1300 | 2.2178 | - | - | - | - |
0.0379 | 1400 | 1.974 | - | - | - | - |
0.0406 | 1500 | 1.9364 | - | - | - | - |
0.0433 | 1600 | 2.0906 | - | - | - | - |
0.0460 | 1700 | 1.8783 | - | - | - | - |
0.0487 | 1800 | 2.1149 | - | - | - | - |
0.0514 | 1900 | 1.7162 | - | - | - | - |
0.0541 | 2000 | 1.6761 | 3.8862 | 0.7490 | 0.7097 | 0.4082 |
0.0568 | 2100 | 2.1701 | - | - | - | - |
0.0596 | 2200 | 2.1306 | - | - | - | - |
0.0623 | 2300 | 1.6543 | - | - | - | - |
0.0650 | 2400 | 1.8157 | - | - | - | - |
0.0677 | 2500 | 1.7779 | - | - | - | - |
0.0704 | 2600 | 1.9434 | - | - | - | - |
0.0731 | 2700 | 1.7776 | - | - | - | - |
0.0758 | 2800 | 1.8197 | - | - | - | - |
0.0785 | 2900 | 1.9886 | - | - | - | - |
0.0812 | 3000 | 2.0699 | 3.8031 | 0.7298 | 0.7147 | 0.4282 |
0.0839 | 3100 | 1.9496 | - | - | - | - |
0.0866 | 3200 | 1.8349 | - | - | - | - |
0.0893 | 3300 | 2.111 | - | - | - | - |
0.0920 | 3400 | 1.9956 | - | - | - | - |
0.0947 | 3500 | 2.0379 | - | - | - | - |
0.0974 | 3600 | 1.8975 | - | - | - | - |
0.1002 | 3700 | 1.8552 | - | - | - | - |
0.1029 | 3800 | 1.9566 | - | - | - | - |
0.1056 | 3900 | 2.011 | - | - | - | - |
0.1083 | 4000 | 2.1263 | 3.7799 | 0.7221 | 0.7176 | 0.4393 |
0.1110 | 4100 | 1.8217 | - | - | - | - |
0.1137 | 4200 | 1.8638 | - | - | - | - |
0.1164 | 4300 | 1.7699 | - | - | - | - |
0.1191 | 4400 | 1.8248 | - | - | - | - |
0.1218 | 4500 | 1.835 | - | - | - | - |
0.1245 | 4600 | 1.9294 | - | - | - | - |
0.1272 | 4700 | 1.9817 | - | - | - | - |
0.1299 | 4800 | 1.877 | - | - | - | - |
0.1326 | 4900 | 1.5824 | - | - | - | - |
0.1353 | 5000 | 1.7429 | 3.7728 | 0.7163 | 0.7196 | 0.4496 |
0.1380 | 5100 | 1.8552 | - | - | - | - |
0.1408 | 5200 | 1.6888 | - | - | - | - |
0.1435 | 5300 | 1.9409 | - | - | - | - |
0.1462 | 5400 | 1.9389 | - | - | - | - |
0.1489 | 5500 | 1.82 | - | - | - | - |
0.1516 | 5600 | 1.9763 | - | - | - | - |
0.1543 | 5700 | 1.8122 | - | - | - | - |
0.1570 | 5800 | 1.7204 | - | - | - | - |
0.1597 | 5900 | 1.6901 | - | - | - | - |
0.1624 | 6000 | 1.7785 | 3.7514 | 0.7124 | 0.7195 | 0.4516 |
0.1651 | 6100 | 1.8559 | - | - | - | - |
0.1678 | 6200 | 1.7646 | - | - | - | - |
0.1705 | 6300 | 1.9068 | - | - | - | - |
0.1732 | 6400 | 1.8848 | - | - | - | - |
0.1759 | 6500 | 1.9384 | - | - | - | - |
0.1787 | 6600 | 1.7692 | - | - | - | - |
0.1814 | 6700 | 1.7093 | - | - | - | - |
0.1841 | 6800 | 1.8759 | - | - | - | - |
0.1868 | 6900 | 1.7319 | - | - | - | - |
0.1895 | 7000 | 1.9428 | 3.7487 | 0.7076 | 0.7256 | 0.4496 |
0.1922 | 7100 | 1.5733 | - | - | - | - |
0.1949 | 7200 | 1.8487 | - | - | - | - |
0.1976 | 7300 | 1.8361 | - | - | - | - |
0.2003 | 7400 | 1.9911 | - | - | - | - |
0.2030 | 7500 | 1.784 | - | - | - | - |
0.2057 | 7600 | 1.8518 | - | - | - | - |
0.2084 | 7700 | 1.6232 | - | - | - | - |
0.2111 | 7800 | 1.6239 | - | - | - | - |
0.2138 | 7900 | 1.7589 | - | - | - | - |
0.2165 | 8000 | 1.8644 | 3.7387 | 0.7040 | 0.7241 | 0.4552 |
0.2193 | 8100 | 1.7903 | - | - | - | - |
0.2220 | 8200 | 1.7197 | - | - | - | - |
0.2247 | 8300 | 1.9099 | - | - | - | - |
0.2274 | 8400 | 1.6778 | - | - | - | - |
0.2301 | 8500 | 1.9249 | - | - | - | - |
0.2328 | 8600 | 1.8483 | - | - | - | - |
0.2355 | 8700 | 1.6849 | - | - | - | - |
0.2382 | 8800 | 1.8647 | - | - | - | - |
0.2409 | 8900 | 1.8826 | - | - | - | - |
0.2436 | 9000 | 1.7632 | 3.7403 | 0.7033 | 0.7225 | 0.4545 |
0.2463 | 9100 | 1.8142 | - | - | - | - |
0.2490 | 9200 | 1.7374 | - | - | - | - |
0.2517 | 9300 | 1.8646 | - | - | - | - |
0.2544 | 9400 | 1.7623 | - | - | - | - |
0.2571 | 9500 | 1.7802 | - | - | - | - |
0.2599 | 9600 | 1.843 | - | - | - | - |
0.2626 | 9700 | 1.9797 | - | - | - | - |
0.2653 | 9800 | 1.7748 | - | - | - | - |
0.2680 | 9900 | 1.7031 | - | - | - | - |
0.2707 | 10000 | 1.5536 | 3.7613 | 0.7016 | 0.7259 | 0.4548 |
0.2734 | 10100 | 1.7663 | - | - | - | - |
0.2761 | 10200 | 1.8218 | - | - | - | - |
0.2788 | 10300 | 1.6327 | - | - | - | - |
0.2815 | 10400 | 1.8802 | - | - | - | - |
0.2842 | 10500 | 1.6294 | - | - | - | - |
0.2869 | 10600 | 1.9001 | - | - | - | - |
0.2896 | 10700 | 1.7873 | - | - | - | - |
0.2923 | 10800 | 1.8121 | - | - | - | - |
0.2950 | 10900 | 2.0197 | - | - | - | - |
0.2978 | 11000 | 1.7006 | 3.7559 | 0.7004 | 0.727 | 0.4613 |
0.3005 | 11100 | 1.6404 | - | - | - | - |
0.3032 | 11200 | 1.9422 | - | - | - | - |
0.3059 | 11300 | 1.5917 | - | - | - | - |
0.3086 | 11400 | 1.7236 | - | - | - | - |
0.3113 | 11500 | 1.8977 | - | - | - | - |
0.3140 | 11600 | 1.7686 | - | - | - | - |
0.3167 | 11700 | 1.4493 | - | - | - | - |
0.3194 | 11800 | 1.7447 | - | - | - | - |
0.3221 | 11900 | 1.9412 | - | - | - | - |
0.3248 | 12000 | 1.8 | 3.7308 | 0.6997 | 0.7241 | 0.4618 |
0.3275 | 12100 | 1.8855 | - | - | - | - |
0.3302 | 12200 | 1.5133 | - | - | - | - |
0.3329 | 12300 | 1.7893 | - | - | - | - |
0.3356 | 12400 | 1.7861 | - | - | - | - |
0.3384 | 12500 | 1.7733 | - | - | - | - |
0.3411 | 12600 | 1.5877 | - | - | - | - |
0.3438 | 12700 | 2.03 | - | - | - | - |
0.3465 | 12800 | 1.7071 | - | - | - | - |
0.3492 | 12900 | 1.7848 | - | - | - | - |
0.3519 | 13000 | 1.7508 | 3.7326 | 0.7006 | 0.7247 | 0.4583 |
0.3546 | 13100 | 1.7667 | - | - | - | - |
0.3573 | 13200 | 1.6415 | - | - | - | - |
0.3600 | 13300 | 1.7501 | - | - | - | - |
0.3627 | 13400 | 1.8451 | - | - | - | - |
0.3654 | 13500 | 1.7146 | - | - | - | - |
0.3681 | 13600 | 1.6837 | - | - | - | - |
0.3708 | 13700 | 1.92 | - | - | - | - |
0.3735 | 13800 | 1.6925 | - | - | - | - |
0.3763 | 13900 | 1.7799 | - | - | - | - |
0.3790 | 14000 | 1.527 | 3.7260 | 0.6989 | 0.727 | 0.4510 |
0.3817 | 14100 | 1.7222 | - | - | - | - |
0.3844 | 14200 | 1.8278 | - | - | - | - |
0.3871 | 14300 | 1.7669 | - | - | - | - |
0.3898 | 14400 | 1.5856 | - | - | - | - |
0.3925 | 14500 | 1.8234 | - | - | - | - |
0.3952 | 14600 | 1.7151 | - | - | - | - |
0.3979 | 14700 | 1.6432 | - | - | - | - |
0.4006 | 14800 | 1.9005 | - | - | - | - |
0.4033 | 14900 | 1.6946 | - | - | - | - |
0.4060 | 15000 | 1.5543 | 3.7222 | 0.6969 | 0.7275 | 0.4634 |
0.4087 | 15100 | 1.6736 | - | - | - | - |
0.4114 | 15200 | 1.8898 | - | - | - | - |
0.4141 | 15300 | 1.7224 | - | - | - | - |
0.4169 | 15400 | 1.7909 | - | - | - | - |
0.4196 | 15500 | 1.6555 | - | - | - | - |
0.4223 | 15600 | 1.523 | - | - | - | - |
0.4250 | 15700 | 1.7539 | - | - | - | - |
0.4277 | 15800 | 1.5763 | - | - | - | - |
0.4304 | 15900 | 1.7247 | - | - | - | - |
0.4331 | 16000 | 1.876 | 3.7105 | 0.6977 | 0.7263 | 0.4636 |
0.4358 | 16100 | 1.772 | - | - | - | - |
0.4385 | 16200 | 1.6774 | - | - | - | - |
0.4412 | 16300 | 1.7602 | - | - | - | - |
0.4439 | 16400 | 1.705 | - | - | - | - |
0.4466 | 16500 | 1.7893 | - | - | - | - |
0.4493 | 16600 | 1.653 | - | - | - | - |
0.4520 | 16700 | 1.8326 | - | - | - | - |
0.4547 | 16800 | 1.5326 | - | - | - | - |
0.4575 | 16900 | 1.8251 | - | - | - | - |
0.4602 | 17000 | 1.766 | 3.7193 | 0.6973 | 0.7257 | 0.4655 |
0.4629 | 17100 | 1.7162 | - | - | - | - |
0.4656 | 17200 | 1.6969 | - | - | - | - |
0.4683 | 17300 | 1.5172 | - | - | - | - |
0.4710 | 17400 | 1.7102 | - | - | - | - |
0.4737 | 17500 | 1.8369 | - | - | - | - |
0.4764 | 17600 | 1.8069 | - | - | - | - |
0.4791 | 17700 | 1.6299 | - | - | - | - |
0.4818 | 17800 | 1.8474 | - | - | - | - |
0.4845 | 17900 | 1.5864 | - | - | - | - |
0.4872 | 18000 | 1.7455 | 3.7087 | 0.6986 | 0.7249 | 0.4626 |
0.4899 | 18100 | 1.8263 | - | - | - | - |
0.4926 | 18200 | 1.8548 | - | - | - | - |
0.4954 | 18300 | 1.6442 | - | - | - | - |
0.4981 | 18400 | 1.7467 | - | - | - | - |
0.5008 | 18500 | 1.6174 | - | - | - | - |
0.5035 | 18600 | 1.4465 | - | - | - | - |
0.5062 | 18700 | 1.8866 | - | - | - | - |
0.5089 | 18800 | 1.72 | - | - | - | - |
0.5116 | 18900 | 1.7466 | - | - | - | - |
0.5143 | 19000 | 1.9124 | 3.7247 | 0.6979 | 0.725 | 0.4602 |
0.5170 | 19100 | 1.5687 | - | - | - | - |
0.5197 | 19200 | 1.6391 | - | - | - | - |
0.5224 | 19300 | 1.8248 | - | - | - | - |
0.5251 | 19400 | 1.6231 | - | - | - | - |
0.5278 | 19500 | 1.6152 | - | - | - | - |
0.5305 | 19600 | 1.639 | - | - | - | - |
0.5332 | 19700 | 1.6098 | - | - | - | - |
0.5360 | 19800 | 1.6619 | - | - | - | - |
0.5387 | 19900 | 1.6997 | - | - | - | - |
0.5414 | 20000 | 1.718 | 3.7259 | 0.6989 | 0.7264 | 0.4660 |
0.5441 | 20100 | 1.634 | - | - | - | - |
0.5468 | 20200 | 1.7865 | - | - | - | - |
0.5495 | 20300 | 1.8573 | - | - | - | - |
0.5522 | 20400 | 1.5575 | - | - | - | - |
0.5549 | 20500 | 1.6594 | - | - | - | - |
0.5576 | 20600 | 1.8793 | - | - | - | - |
0.5603 | 20700 | 1.7643 | - | - | - | - |
0.5630 | 20800 | 1.538 | - | - | - | - |
0.5657 | 20900 | 1.8634 | - | - | - | - |
0.5684 | 21000 | 1.916 | 3.7223 | 0.6982 | 0.7258 | 0.4650 |
0.5711 | 21100 | 1.5947 | - | - | - | - |
0.5738 | 21200 | 1.5321 | - | - | - | - |
0.5766 | 21300 | 1.7004 | - | - | - | - |
0.5793 | 21400 | 1.6947 | - | - | - | - |
0.5820 | 21500 | 1.5228 | - | - | - | - |
0.5847 | 21600 | 1.7152 | - | - | - | - |
0.5874 | 21700 | 1.6883 | - | - | - | - |
0.5901 | 21800 | 1.6779 | - | - | - | - |
0.5928 | 21900 | 1.7323 | - | - | - | - |
0.5955 | 22000 | 1.9633 | 3.7266 | 0.6996 | 0.7288 | 0.4635 |
0.5982 | 22100 | 1.7498 | - | - | - | - |
0.6009 | 22200 | 1.7513 | - | - | - | - |
0.6036 | 22300 | 1.7078 | - | - | - | - |
0.6063 | 22400 | 1.6438 | - | - | - | - |
0.6090 | 22500 | 1.6743 | - | - | - | - |
0.6117 | 22600 | 1.6701 | - | - | - | - |
0.6145 | 22700 | 1.7871 | - | - | - | - |
0.6172 | 22800 | 1.6247 | - | - | - | - |
0.6199 | 22900 | 1.7817 | - | - | - | - |
0.6226 | 23000 | 1.6606 | 3.7321 | 0.6993 | 0.7286 | 0.4614 |
0.6253 | 23100 | 1.8987 | - | - | - | - |
0.6280 | 23200 | 1.6494 | - | - | - | - |
0.6307 | 23300 | 1.6776 | - | - | - | - |
0.6334 | 23400 | 1.75 | - | - | - | - |
0.6361 | 23500 | 1.5131 | - | - | - | - |
0.6388 | 23600 | 1.7946 | - | - | - | - |
0.6415 | 23700 | 1.665 | - | - | - | - |
0.6442 | 23800 | 1.6681 | - | - | - | - |
0.6469 | 23900 | 1.8255 | - | - | - | - |
0.6496 | 24000 | 1.6759 | 3.7227 | 0.7017 | 0.7281 | 0.4625 |
0.6523 | 24100 | 1.554 | - | - | - | - |
0.6551 | 24200 | 1.6435 | - | - | - | - |
0.6578 | 24300 | 1.8224 | - | - | - | - |
0.6605 | 24400 | 1.6186 | - | - | - | - |
0.6632 | 24500 | 1.7156 | - | - | - | - |
0.6659 | 24600 | 1.5247 | - | - | - | - |
0.6686 | 24700 | 1.6264 | - | - | - | - |
0.6713 | 24800 | 1.7673 | - | - | - | - |
0.6740 | 24900 | 1.8072 | - | - | - | - |
0.6767 | 25000 | 1.765 | 3.7407 | 0.7026 | 0.7283 | 0.4589 |
0.6794 | 25100 | 1.6422 | - | - | - | - |
0.6821 | 25200 | 1.7846 | - | - | - | - |
0.6848 | 25300 | 1.7366 | - | - | - | - |
0.6875 | 25400 | 1.7839 | - | - | - | - |
0.6902 | 25500 | 1.441 | - | - | - | - |
0.6930 | 25600 | 1.5533 | - | - | - | - |
0.6957 | 25700 | 1.6922 | - | - | - | - |
0.6984 | 25800 | 1.5544 | - | - | - | - |
0.7011 | 25900 | 1.456 | - | - | - | - |
0.7038 | 26000 | 1.6494 | 3.7274 | 0.7059 | 0.7268 | 0.4661 |
0.7065 | 26100 | 1.6963 | - | - | - | - |
0.7092 | 26200 | 1.7892 | - | - | - | - |
0.7119 | 26300 | 1.6669 | - | - | - | - |
0.7146 | 26400 | 1.6758 | - | - | - | - |
0.7173 | 26500 | 1.6322 | - | - | - | - |
0.7200 | 26600 | 1.5416 | - | - | - | - |
0.7227 | 26700 | 1.681 | - | - | - | - |
0.7254 | 26800 | 1.5159 | - | - | - | - |
0.7281 | 26900 | 1.715 | - | - | - | - |
0.7308 | 27000 | 1.6164 | 3.7456 | 0.7061 | 0.7257 | 0.4570 |
0.7336 | 27100 | 1.6784 | - | - | - | - |
0.7363 | 27200 | 1.5886 | - | - | - | - |
0.7390 | 27300 | 1.6736 | - | - | - | - |
0.7417 | 27400 | 1.5659 | - | - | - | - |
0.7444 | 27500 | 1.6552 | - | - | - | - |
0.7471 | 27600 | 1.5672 | - | - | - | - |
0.7498 | 27700 | 1.5873 | - | - | - | - |
0.7525 | 27800 | 1.6746 | - | - | - | - |
0.7552 | 27900 | 1.7503 | - | - | - | - |
0.7579 | 28000 | 1.7287 | 3.7390 | 0.7076 | 0.7244 | 0.4636 |
0.7606 | 28100 | 1.6216 | - | - | - | - |
0.7633 | 28200 | 1.6101 | - | - | - | - |
0.7660 | 28300 | 1.5651 | - | - | - | - |
0.7687 | 28400 | 1.5659 | - | - | - | - |
0.7714 | 28500 | 1.5248 | - | - | - | - |
0.7742 | 28600 | 1.3725 | - | - | - | - |
0.7769 | 28700 | 1.7881 | - | - | - | - |
0.7796 | 28800 | 1.739 | - | - | - | - |
0.7823 | 28900 | 1.6464 | - | - | - | - |
0.7850 | 29000 | 1.6841 | 3.7212 | 0.7073 | 0.7247 | 0.4626 |
0.7877 | 29100 | 1.6254 | - | - | - | - |
0.7904 | 29200 | 1.6728 | - | - | - | - |
0.7931 | 29300 | 1.5605 | - | - | - | - |
0.7958 | 29400 | 1.687 | - | - | - | - |
0.7985 | 29500 | 1.7799 | - | - | - | - |
0.8012 | 29600 | 1.6792 | - | - | - | - |
0.8039 | 29700 | 1.5241 | - | - | - | - |
0.8066 | 29800 | 1.6341 | - | - | - | - |
0.8093 | 29900 | 1.5571 | - | - | - | - |
0.8121 | 30000 | 1.5228 | 3.7397 | 0.7105 | 0.7234 | 0.4682 |
0.8148 | 30100 | 1.5988 | - | - | - | - |
0.8175 | 30200 | 1.4222 | - | - | - | - |
0.8202 | 30300 | 1.4629 | - | - | - | - |
0.8229 | 30400 | 1.6381 | - | - | - | - |
0.8256 | 30500 | 1.4585 | - | - | - | - |
0.8283 | 30600 | 1.6774 | - | - | - | - |
0.8310 | 30700 | 1.811 | - | - | - | - |
0.8337 | 30800 | 1.5872 | - | - | - | - |
0.8364 | 30900 | 1.4762 | - | - | - | - |
0.8391 | 31000 | 1.7079 | 3.7256 | 0.7128 | 0.7215 | 0.4645 |
0.8418 | 31100 | 1.4948 | - | - | - | - |
0.8445 | 31200 | 1.4556 | - | - | - | - |
0.8472 | 31300 | 1.5191 | - | - | - | - |
0.8499 | 31400 | 1.598 | - | - | - | - |
0.8527 | 31500 | 1.6586 | - | - | - | - |
0.8554 | 31600 | 1.6893 | - | - | - | - |
0.8581 | 31700 | 1.7764 | - | - | - | - |
0.8608 | 31800 | 1.3632 | - | - | - | - |
0.8635 | 31900 | 1.6681 | - | - | - | - |
0.8662 | 32000 | 1.6232 | 3.7358 | 0.7161 | 0.7232 | 0.4651 |
0.8689 | 32100 | 1.4556 | - | - | - | - |
0.8716 | 32200 | 1.8698 | - | - | - | - |
0.8743 | 32300 | 1.7566 | - | - | - | - |
0.8770 | 32400 | 1.6082 | - | - | - | - |
0.8797 | 32500 | 1.6465 | - | - | - | - |
0.8824 | 32600 | 1.5018 | - | - | - | - |
0.8851 | 32700 | 1.8482 | - | - | - | - |
0.8878 | 32800 | 1.5147 | - | - | - | - |
0.8905 | 32900 | 1.699 | - | - | - | - |
0.8933 | 33000 | 1.5738 | 3.7323 | 0.7176 | 0.7246 | 0.4657 |
0.8960 | 33100 | 1.635 | - | - | - | - |
0.8987 | 33200 | 1.7069 | - | - | - | - |
0.9014 | 33300 | 1.6272 | - | - | - | - |
0.9041 | 33400 | 1.7648 | - | - | - | - |
0.9068 | 33500 | 1.6683 | - | - | - | - |
0.9095 | 33600 | 1.4867 | - | - | - | - |
0.9122 | 33700 | 1.6677 | - | - | - | - |
0.9149 | 33800 | 1.5527 | - | - | - | - |
0.9176 | 33900 | 1.6804 | - | - | - | - |
0.9203 | 34000 | 1.425 | 3.7477 | 0.7172 | 0.7231 | 0.4596 |
0.9230 | 34100 | 1.771 | - | - | - | - |
0.9257 | 34200 | 1.5767 | - | - | - | - |
0.9284 | 34300 | 1.5424 | - | - | - | - |
0.9312 | 34400 | 1.5985 | - | - | - | - |
0.9339 | 34500 | 1.6763 | - | - | - | - |
0.9366 | 34600 | 1.6608 | - | - | - | - |
0.9393 | 34700 | 1.7736 | - | - | - | - |
0.9420 | 34800 | 1.8955 | - | - | - | - |
0.9447 | 34900 | 1.5688 | - | - | - | - |
0.9474 | 35000 | 1.6123 | 3.7410 | 0.7196 | 0.7226 | 0.4671 |
0.9501 | 35100 | 1.7264 | - | - | - | - |
0.9528 | 35200 | 1.5511 | - | - | - | - |
0.9555 | 35300 | 1.6409 | - | - | - | - |
0.9582 | 35400 | 1.47 | - | - | - | - |
0.9609 | 35500 | 1.8675 | - | - | - | - |
0.9636 | 35600 | 1.6868 | - | - | - | - |
0.9663 | 35700 | 1.744 | - | - | - | - |
0.9690 | 35800 | 1.6734 | - | - | - | - |
0.9718 | 35900 | 1.4154 | - | - | - | - |
0.9745 | 36000 | 1.4793 | 3.7393 | 0.7190 | 0.7223 | 0.4677 |
0.9772 | 36100 | 1.7126 | - | - | - | - |
0.9799 | 36200 | 1.7037 | - | - | - | - |
0.9826 | 36300 | 1.6306 | - | - | - | - |
0.9853 | 36400 | 1.7783 | - | - | - | - |
0.9880 | 36500 | 1.5751 | - | - | - | - |
0.9907 | 36600 | 1.6079 | - | - | - | - |
0.9934 | 36700 | 1.7162 | - | - | - | - |
0.9961 | 36800 | 1.447 | - | - | - | - |
0.9988 | 36900 | 1.6155 | - | - | - | - |
1.0015 | 37000 | 1.7294 | 3.7512 | 0.7177 | 0.7236 | 0.4659 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.38.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}