lv12's picture
full set multi loss ESCI triplets
0c56232 verified
|
raw
history blame
67 kB
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1182198
  - loss:CachedMultipleNegativesRankingLoss
  - loss:AnglELoss
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: dog instrument toy
    sentences:
      - >-
        VATOS 25-in-1 Mars Rover Building Kit Outer Space Explorer Educational
        Construction Toy for Kids 556 Pieces Solar Powered STEM Science Building
        Blocks Set, VATOS, White
      - >-
        Prefer Green 7 PCS Portion Control Containers Kit (with COMPLETE GUIDE &
        21 DAY DAILY TRACKER & 21 DAY MEAL PLANNER & RECIPES
        PDFs),Label-Coded,Multi-Color-Coded System,Perfect Size for Lose Weight,
        Prefer Green, 7 PCS
      - >-
        Coolibar UPF 50+ Men's Women's Gannett UV Gloves - Sun Protective
        (Medium- Light Blue), Coolibar, Light Blue
  - source_sentence: flame decal stickers
    sentences:
      - >-
        Tribal Flames Splash Pair - Vinyl Decal Sticker - 12" x 5" - Blue
        Flames, Sticker Pimp, Blue Flames
      - >-
        PC Gaming Headset Headphone Hook Holder Hanger Mount, Headphones Stand
        with Adjustable & Rotating Arm Clamp , Under Desk Design , Universal Fit
        , Built in Cable Clip Organizer EURPMASK, EURPMASK Choose the color of
        europe, Black
      - >-
        Quick Charge 3.0 Wall Charger, 4-Pack 18W QC 3.0 USB Charger Adapter
        Fast Charging Block Compatible Wireless Charger Compatible with Samsung
        Galaxy S10 S9 S8 Plus S7 S6 Edge Note 9, LG, Kindle, Tablet, HONOT,
        Black
  - source_sentence: 'search_query: softies women''s ultra soft marshmallow hooded lounger'
    sentences:
      - >-
        search_document: Red-A Placemats for Dining Table Set of 6
        Heat-Resistant Wipeable Table Mats for Kitchen Table Decoration
        Waterproof Vinyl Placemats Easy to Clean,Black w/Brown, Red-A, Black
      - >-
        search_document: Softies Women's Ultra Soft Marshmallow Hooded Lounger,
        Platinum, L/XL, Softies, Platinum
      - >-
        search_document: Ekouaer Women's Sleepwear Robe with Pockets Plus Size
        Maxi Lounger Zipper Short Sleeve Bathrobe Housecoat (Black,L), Ekouaer,
        Black
  - source_sentence: 'search_query: wine glasses without stem'
    sentences:
      - >-
        search_document: STAUBER Best Bulb Changer with PowerLatch Extension
        Pole (Large Suction, 4 Feet), STAUBER, Large Suction
      - >-
        search_document: Hand Blown Italian Style Crystal Burgundy Wine Glasses
        - Lead-Free Premium Crystal Clear Glass - Set of 2 - 21 Ounce - Gift-Box
        for any Occasion, JBHO, Burgundy
      - >-
        search_document: MyGift Modern Copper Stemless Wine Glasses, Set of 4,
        MyGift, Copper
  - source_sentence: 'search_query: weighted blanket without glass beads'
    sentences:
      - >-
        search_document: Eigso Women Men Spike Punk Rock Black Leather Cuff
        Rivet Bracelet Bangle Adjustable Snap Button, Eigso, Black
      - >-
        search_document: Quility Weighted Blanket with Soft Cover - 20 lbs
        Full/Queen Size Heavy Blanket for Adults - Heating & Cooling, Machine
        Washable - (60" X 80") (Navy), Quility, Navy Cover + Grey Cotton Blanket
      - >-
        search_document: Bedsure Queen Weighted Blanket 15 Pounds - Adult
        Weighted Blanket 60x80 - Soft Heavy Blanket with Breathable TPE Insert
        No Glass Beads, Bedsure, Navy
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.7236
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.282
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.7231
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.7227
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.7236
            name: Max Accuracy
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.4912162846043421
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4658522123059972
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.4599741171303018
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4428141949345816
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.46194545823984606
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.44478471500226807
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.45451995456560107
            name: Pearson Dot
          - type: spearman_dot
            value: 0.43844636325741904
            name: Spearman Dot
          - type: pearson_max
            value: 0.4912162846043421
            name: Pearson Max
          - type: spearman_max
            value: 0.4658522123059972
            name: Spearman Max

SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the triplets and pairs datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • triplets
    • pairs

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("lv12/esci-nomic-embed-text-v1_5_4")
# Run inference
sentences = [
    'search_query: weighted blanket without glass beads',
    'search_document: Bedsure Queen Weighted Blanket 15 Pounds - Adult Weighted Blanket 60x80 - Soft Heavy Blanket with Breathable TPE Insert No Glass Beads, Bedsure, Navy',
    'search_document: Quility Weighted Blanket with Soft Cover - 20 lbs Full/Queen Size Heavy Blanket for Adults - Heating & Cooling, Machine Washable - (60" X 80") (Navy), Quility, Navy Cover + Grey Cotton Blanket',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.7236
dot_accuracy 0.282
manhattan_accuracy 0.7231
euclidean_accuracy 0.7227
max_accuracy 0.7236

Semantic Similarity

Metric Value
pearson_cosine 0.4912
spearman_cosine 0.4659
pearson_manhattan 0.46
spearman_manhattan 0.4428
pearson_euclidean 0.4619
spearman_euclidean 0.4448
pearson_dot 0.4545
spearman_dot 0.4384
pearson_max 0.4912
spearman_max 0.4659

Training Details

Training Datasets

triplets

  • Dataset: triplets
  • Size: 684,084 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.1 tokens
    • max: 22 tokens
    • min: 17 tokens
    • mean: 42.75 tokens
    • max: 95 tokens
    • min: 15 tokens
    • mean: 43.8 tokens
    • max: 127 tokens
  • Samples:
    anchor positive negative
    search_query: tarps heavy duty waterproof 8x10 search_document: 8' x 10' Super Heavy Duty 16 Mil Brown Poly Tarp Cover - Thick Waterproof, UV Resistant, Rip and Tear Proof Tarpaulin with Grommets and Reinforced Edges - by Xpose Safety, Xpose Safety, Brown search_document: Grillkid 6'X8' 4.5 Mil Thick General Purpose Waterproof Poly Tarp, Grillkid, All Purpose
    search_query: wireless keyboard without number pad search_document: Macally 2.4G Small Wireless Keyboard - Ergonomic & Comfortable Computer Keyboard - Compact Keyboard for Laptop or Windows PC Desktop, Tablet, Smart TV - Plug & Play Mini Keyboard with 12 Hot Keys, Macally, Black search_document: Wireless Keyboard - iClever GKA22S Rechargeable Keyboard with Number Pad, Full-Size Stainless Steel Ultra Slim Keyboard, 2.4G Stable Connection Wireless Keyboard for iMac, Mackbook, PC, Laptop, iClever, Silver
    search_query: geometry earrings search_document: Simple Stud Earrings for Women, Geometric Minimalist Stud Earring Set Tiny Circle Triangle Square Bar Stud Earrings Mini Cartilage Tragus Earrings, choice of all, B:Circle Sliver search_document: BONALUNA Bohemian Wood And Marble Effect Oblong Shaped Drop Statement Earrings (VIVID TURQUOISE), BONALUNA, VIVID TURQUOISE
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

pairs

  • Dataset: pairs
  • Size: 498,114 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 6.73 tokens
    • max: 33 tokens
    • min: 10 tokens
    • mean: 40.14 tokens
    • max: 98 tokens
    • min: 0.0
    • mean: 0.81
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    I would choose a medium weight waterproof fabric, hip length jacket or longer, long sleeves, zip front, with a hood and deep pockets with zips ZSHOW Men's Winter Hooded Packable Down Jacket(Blue, XX-Large), ZSHOW, Blue 1.0
    sequin dance costume girls Yeahdor Big Girls' Lyrical Latin Ballet Dance Costumes Dresses Halter Sequins Irregular Tutu Skirted Leotard Dancewear Pink 12-14, Yeahdor, Pink 1.0
    paint easel bulk Artecho Artist Easel Display Easel Stand, 2 Pack Metal Tripod Stand Easel for Painting, Hold Canvas from 21" to 66", Floor and Tabletop Displaying, Painting with Portable Bag, Artecho, Black 1.0
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Evaluation Datasets

triplets

  • Dataset: triplets
  • Size: 10,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 11.13 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 43.11 tokens
    • max: 107 tokens
    • min: 15 tokens
    • mean: 43.56 tokens
    • max: 99 tokens
  • Samples:
    anchor positive negative
    search_query: hitch fifth wheel search_document: ENIXWILL 5th Wheel Trailer Hitch Lifting Device Bracket Pin Fit for Hitch Companion and Patriot Series Hitch, ENIXWILL, Black search_document: ECOTRIC Fifth 5th Wheel Trailer Hitch Mount Rails and Installation Kits for Full-Size Trucks, ECOTRIC, black
    search_query: dek pro search_document: Cubiker Computer Desk 47 inch Home Office Writing Study Desk, Modern Simple Style Laptop Table with Storage Bag, Brown, Cubiker, Brown search_document: FEZIBO Dual Motor L Shaped Electric Standing Desk, 48 Inches Stand Up Corner Desk, Home Office Sit Stand Desk with Rustic Brown Top and Black Frame, FEZIBO, Rustic Brown
    search_query: 1 year baby mouth without teeth cleaner search_document: Baby Toothbrush,Infant Toothbrush,Baby Tongue Cleaner,Infant Toothbrush,Baby Tongue Cleaner Newborn,Toothbrush Tongue Cleaner Dental Care for 0-36 Month Baby,36 Pcs + Free 4 Pcs, Babycolor, Blue search_document: Slotic Baby Toothbrush for 0-2 Years, Safe and Sturdy, Toddler Oral Care Teether Brush, Extra Soft Bristle for Baby Teeth and Infant Gums, Dentist Recommended (4-Pack), Slotic, 4 Pack
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

pairs

  • Dataset: pairs
  • Size: 10,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 6.8 tokens
    • max: 34 tokens
    • min: 9 tokens
    • mean: 39.7 tokens
    • max: 101 tokens
    • min: 0.0
    • mean: 0.77
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    outdoor ceiling fans without light 44" Plaza Industrial Indoor Outdoor Ceiling Fan with Remote Control Oil Rubbed Bronze Damp Rated for Patio Porch - Casa Vieja, Casa Vieja, No Light Kit - Bronze 1.0
    bathroom cabinet Homfa Bathroom Floor Cabinet Free Standing with Single Door Multifunctional Bathroom Storage Organizer Toiletries(Ivory White), Homfa, White 1.0
    fitbit charge 3 TreasureMax Compatible with Fitbit Charge 2 Bands for Women/Men,Silicone Fadeless Pattern Printed Replacement Floral Bands for Fitbit Charge 2 HR Wristbands, TreasureMax, Paw 2 0.4
  • Loss: AnglELoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_angle_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 2
  • learning_rate: 1e-06
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {'num_cycles': 1}
  • warmup_ratio: 0.01
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 4
  • load_best_model_at_end: True
  • gradient_checkpointing: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 1e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {'num_cycles': 1}
  • warmup_ratio: 0.01
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 4
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss pairs loss triplets loss cosine_accuracy spearman_cosine
0.0027 100 2.4909 - - - -
0.0054 200 2.6666 - - - -
0.0081 300 2.76 - - - -
0.0108 400 2.6945 - - - -
0.0135 500 2.9113 - - - -
0.0162 600 2.3476 - - - -
0.0189 700 2.2818 - - - -
0.0217 800 2.4241 - - - -
0.0244 900 2.5126 - - - -
0.0271 1000 2.4106 4.7376 0.8087 0.6993 0.3844
0.0298 1100 2.2369 - - - -
0.0325 1200 2.0614 - - - -
0.0352 1300 2.2178 - - - -
0.0379 1400 1.974 - - - -
0.0406 1500 1.9364 - - - -
0.0433 1600 2.0906 - - - -
0.0460 1700 1.8783 - - - -
0.0487 1800 2.1149 - - - -
0.0514 1900 1.7162 - - - -
0.0541 2000 1.6761 3.8862 0.7490 0.7097 0.4082
0.0568 2100 2.1701 - - - -
0.0596 2200 2.1306 - - - -
0.0623 2300 1.6543 - - - -
0.0650 2400 1.8157 - - - -
0.0677 2500 1.7779 - - - -
0.0704 2600 1.9434 - - - -
0.0731 2700 1.7776 - - - -
0.0758 2800 1.8197 - - - -
0.0785 2900 1.9886 - - - -
0.0812 3000 2.0699 3.8031 0.7298 0.7147 0.4282
0.0839 3100 1.9496 - - - -
0.0866 3200 1.8349 - - - -
0.0893 3300 2.111 - - - -
0.0920 3400 1.9956 - - - -
0.0947 3500 2.0379 - - - -
0.0974 3600 1.8975 - - - -
0.1002 3700 1.8552 - - - -
0.1029 3800 1.9566 - - - -
0.1056 3900 2.011 - - - -
0.1083 4000 2.1263 3.7799 0.7221 0.7176 0.4393
0.1110 4100 1.8217 - - - -
0.1137 4200 1.8638 - - - -
0.1164 4300 1.7699 - - - -
0.1191 4400 1.8248 - - - -
0.1218 4500 1.835 - - - -
0.1245 4600 1.9294 - - - -
0.1272 4700 1.9817 - - - -
0.1299 4800 1.877 - - - -
0.1326 4900 1.5824 - - - -
0.1353 5000 1.7429 3.7728 0.7163 0.7196 0.4496
0.1380 5100 1.8552 - - - -
0.1408 5200 1.6888 - - - -
0.1435 5300 1.9409 - - - -
0.1462 5400 1.9389 - - - -
0.1489 5500 1.82 - - - -
0.1516 5600 1.9763 - - - -
0.1543 5700 1.8122 - - - -
0.1570 5800 1.7204 - - - -
0.1597 5900 1.6901 - - - -
0.1624 6000 1.7785 3.7514 0.7124 0.7195 0.4516
0.1651 6100 1.8559 - - - -
0.1678 6200 1.7646 - - - -
0.1705 6300 1.9068 - - - -
0.1732 6400 1.8848 - - - -
0.1759 6500 1.9384 - - - -
0.1787 6600 1.7692 - - - -
0.1814 6700 1.7093 - - - -
0.1841 6800 1.8759 - - - -
0.1868 6900 1.7319 - - - -
0.1895 7000 1.9428 3.7487 0.7076 0.7256 0.4496
0.1922 7100 1.5733 - - - -
0.1949 7200 1.8487 - - - -
0.1976 7300 1.8361 - - - -
0.2003 7400 1.9911 - - - -
0.2030 7500 1.784 - - - -
0.2057 7600 1.8518 - - - -
0.2084 7700 1.6232 - - - -
0.2111 7800 1.6239 - - - -
0.2138 7900 1.7589 - - - -
0.2165 8000 1.8644 3.7387 0.7040 0.7241 0.4552
0.2193 8100 1.7903 - - - -
0.2220 8200 1.7197 - - - -
0.2247 8300 1.9099 - - - -
0.2274 8400 1.6778 - - - -
0.2301 8500 1.9249 - - - -
0.2328 8600 1.8483 - - - -
0.2355 8700 1.6849 - - - -
0.2382 8800 1.8647 - - - -
0.2409 8900 1.8826 - - - -
0.2436 9000 1.7632 3.7403 0.7033 0.7225 0.4545
0.2463 9100 1.8142 - - - -
0.2490 9200 1.7374 - - - -
0.2517 9300 1.8646 - - - -
0.2544 9400 1.7623 - - - -
0.2571 9500 1.7802 - - - -
0.2599 9600 1.843 - - - -
0.2626 9700 1.9797 - - - -
0.2653 9800 1.7748 - - - -
0.2680 9900 1.7031 - - - -
0.2707 10000 1.5536 3.7613 0.7016 0.7259 0.4548
0.2734 10100 1.7663 - - - -
0.2761 10200 1.8218 - - - -
0.2788 10300 1.6327 - - - -
0.2815 10400 1.8802 - - - -
0.2842 10500 1.6294 - - - -
0.2869 10600 1.9001 - - - -
0.2896 10700 1.7873 - - - -
0.2923 10800 1.8121 - - - -
0.2950 10900 2.0197 - - - -
0.2978 11000 1.7006 3.7559 0.7004 0.727 0.4613
0.3005 11100 1.6404 - - - -
0.3032 11200 1.9422 - - - -
0.3059 11300 1.5917 - - - -
0.3086 11400 1.7236 - - - -
0.3113 11500 1.8977 - - - -
0.3140 11600 1.7686 - - - -
0.3167 11700 1.4493 - - - -
0.3194 11800 1.7447 - - - -
0.3221 11900 1.9412 - - - -
0.3248 12000 1.8 3.7308 0.6997 0.7241 0.4618
0.3275 12100 1.8855 - - - -
0.3302 12200 1.5133 - - - -
0.3329 12300 1.7893 - - - -
0.3356 12400 1.7861 - - - -
0.3384 12500 1.7733 - - - -
0.3411 12600 1.5877 - - - -
0.3438 12700 2.03 - - - -
0.3465 12800 1.7071 - - - -
0.3492 12900 1.7848 - - - -
0.3519 13000 1.7508 3.7326 0.7006 0.7247 0.4583
0.3546 13100 1.7667 - - - -
0.3573 13200 1.6415 - - - -
0.3600 13300 1.7501 - - - -
0.3627 13400 1.8451 - - - -
0.3654 13500 1.7146 - - - -
0.3681 13600 1.6837 - - - -
0.3708 13700 1.92 - - - -
0.3735 13800 1.6925 - - - -
0.3763 13900 1.7799 - - - -
0.3790 14000 1.527 3.7260 0.6989 0.727 0.4510
0.3817 14100 1.7222 - - - -
0.3844 14200 1.8278 - - - -
0.3871 14300 1.7669 - - - -
0.3898 14400 1.5856 - - - -
0.3925 14500 1.8234 - - - -
0.3952 14600 1.7151 - - - -
0.3979 14700 1.6432 - - - -
0.4006 14800 1.9005 - - - -
0.4033 14900 1.6946 - - - -
0.4060 15000 1.5543 3.7222 0.6969 0.7275 0.4634
0.4087 15100 1.6736 - - - -
0.4114 15200 1.8898 - - - -
0.4141 15300 1.7224 - - - -
0.4169 15400 1.7909 - - - -
0.4196 15500 1.6555 - - - -
0.4223 15600 1.523 - - - -
0.4250 15700 1.7539 - - - -
0.4277 15800 1.5763 - - - -
0.4304 15900 1.7247 - - - -
0.4331 16000 1.876 3.7105 0.6977 0.7263 0.4636
0.4358 16100 1.772 - - - -
0.4385 16200 1.6774 - - - -
0.4412 16300 1.7602 - - - -
0.4439 16400 1.705 - - - -
0.4466 16500 1.7893 - - - -
0.4493 16600 1.653 - - - -
0.4520 16700 1.8326 - - - -
0.4547 16800 1.5326 - - - -
0.4575 16900 1.8251 - - - -
0.4602 17000 1.766 3.7193 0.6973 0.7257 0.4655
0.4629 17100 1.7162 - - - -
0.4656 17200 1.6969 - - - -
0.4683 17300 1.5172 - - - -
0.4710 17400 1.7102 - - - -
0.4737 17500 1.8369 - - - -
0.4764 17600 1.8069 - - - -
0.4791 17700 1.6299 - - - -
0.4818 17800 1.8474 - - - -
0.4845 17900 1.5864 - - - -
0.4872 18000 1.7455 3.7087 0.6986 0.7249 0.4626
0.4899 18100 1.8263 - - - -
0.4926 18200 1.8548 - - - -
0.4954 18300 1.6442 - - - -
0.4981 18400 1.7467 - - - -
0.5008 18500 1.6174 - - - -
0.5035 18600 1.4465 - - - -
0.5062 18700 1.8866 - - - -
0.5089 18800 1.72 - - - -
0.5116 18900 1.7466 - - - -
0.5143 19000 1.9124 3.7247 0.6979 0.725 0.4602
0.5170 19100 1.5687 - - - -
0.5197 19200 1.6391 - - - -
0.5224 19300 1.8248 - - - -
0.5251 19400 1.6231 - - - -
0.5278 19500 1.6152 - - - -
0.5305 19600 1.639 - - - -
0.5332 19700 1.6098 - - - -
0.5360 19800 1.6619 - - - -
0.5387 19900 1.6997 - - - -
0.5414 20000 1.718 3.7259 0.6989 0.7264 0.4660
0.5441 20100 1.634 - - - -
0.5468 20200 1.7865 - - - -
0.5495 20300 1.8573 - - - -
0.5522 20400 1.5575 - - - -
0.5549 20500 1.6594 - - - -
0.5576 20600 1.8793 - - - -
0.5603 20700 1.7643 - - - -
0.5630 20800 1.538 - - - -
0.5657 20900 1.8634 - - - -
0.5684 21000 1.916 3.7223 0.6982 0.7258 0.4650
0.5711 21100 1.5947 - - - -
0.5738 21200 1.5321 - - - -
0.5766 21300 1.7004 - - - -
0.5793 21400 1.6947 - - - -
0.5820 21500 1.5228 - - - -
0.5847 21600 1.7152 - - - -
0.5874 21700 1.6883 - - - -
0.5901 21800 1.6779 - - - -
0.5928 21900 1.7323 - - - -
0.5955 22000 1.9633 3.7266 0.6996 0.7288 0.4635
0.5982 22100 1.7498 - - - -
0.6009 22200 1.7513 - - - -
0.6036 22300 1.7078 - - - -
0.6063 22400 1.6438 - - - -
0.6090 22500 1.6743 - - - -
0.6117 22600 1.6701 - - - -
0.6145 22700 1.7871 - - - -
0.6172 22800 1.6247 - - - -
0.6199 22900 1.7817 - - - -
0.6226 23000 1.6606 3.7321 0.6993 0.7286 0.4614
0.6253 23100 1.8987 - - - -
0.6280 23200 1.6494 - - - -
0.6307 23300 1.6776 - - - -
0.6334 23400 1.75 - - - -
0.6361 23500 1.5131 - - - -
0.6388 23600 1.7946 - - - -
0.6415 23700 1.665 - - - -
0.6442 23800 1.6681 - - - -
0.6469 23900 1.8255 - - - -
0.6496 24000 1.6759 3.7227 0.7017 0.7281 0.4625
0.6523 24100 1.554 - - - -
0.6551 24200 1.6435 - - - -
0.6578 24300 1.8224 - - - -
0.6605 24400 1.6186 - - - -
0.6632 24500 1.7156 - - - -
0.6659 24600 1.5247 - - - -
0.6686 24700 1.6264 - - - -
0.6713 24800 1.7673 - - - -
0.6740 24900 1.8072 - - - -
0.6767 25000 1.765 3.7407 0.7026 0.7283 0.4589
0.6794 25100 1.6422 - - - -
0.6821 25200 1.7846 - - - -
0.6848 25300 1.7366 - - - -
0.6875 25400 1.7839 - - - -
0.6902 25500 1.441 - - - -
0.6930 25600 1.5533 - - - -
0.6957 25700 1.6922 - - - -
0.6984 25800 1.5544 - - - -
0.7011 25900 1.456 - - - -
0.7038 26000 1.6494 3.7274 0.7059 0.7268 0.4661
0.7065 26100 1.6963 - - - -
0.7092 26200 1.7892 - - - -
0.7119 26300 1.6669 - - - -
0.7146 26400 1.6758 - - - -
0.7173 26500 1.6322 - - - -
0.7200 26600 1.5416 - - - -
0.7227 26700 1.681 - - - -
0.7254 26800 1.5159 - - - -
0.7281 26900 1.715 - - - -
0.7308 27000 1.6164 3.7456 0.7061 0.7257 0.4570
0.7336 27100 1.6784 - - - -
0.7363 27200 1.5886 - - - -
0.7390 27300 1.6736 - - - -
0.7417 27400 1.5659 - - - -
0.7444 27500 1.6552 - - - -
0.7471 27600 1.5672 - - - -
0.7498 27700 1.5873 - - - -
0.7525 27800 1.6746 - - - -
0.7552 27900 1.7503 - - - -
0.7579 28000 1.7287 3.7390 0.7076 0.7244 0.4636
0.7606 28100 1.6216 - - - -
0.7633 28200 1.6101 - - - -
0.7660 28300 1.5651 - - - -
0.7687 28400 1.5659 - - - -
0.7714 28500 1.5248 - - - -
0.7742 28600 1.3725 - - - -
0.7769 28700 1.7881 - - - -
0.7796 28800 1.739 - - - -
0.7823 28900 1.6464 - - - -
0.7850 29000 1.6841 3.7212 0.7073 0.7247 0.4626
0.7877 29100 1.6254 - - - -
0.7904 29200 1.6728 - - - -
0.7931 29300 1.5605 - - - -
0.7958 29400 1.687 - - - -
0.7985 29500 1.7799 - - - -
0.8012 29600 1.6792 - - - -
0.8039 29700 1.5241 - - - -
0.8066 29800 1.6341 - - - -
0.8093 29900 1.5571 - - - -
0.8121 30000 1.5228 3.7397 0.7105 0.7234 0.4682
0.8148 30100 1.5988 - - - -
0.8175 30200 1.4222 - - - -
0.8202 30300 1.4629 - - - -
0.8229 30400 1.6381 - - - -
0.8256 30500 1.4585 - - - -
0.8283 30600 1.6774 - - - -
0.8310 30700 1.811 - - - -
0.8337 30800 1.5872 - - - -
0.8364 30900 1.4762 - - - -
0.8391 31000 1.7079 3.7256 0.7128 0.7215 0.4645
0.8418 31100 1.4948 - - - -
0.8445 31200 1.4556 - - - -
0.8472 31300 1.5191 - - - -
0.8499 31400 1.598 - - - -
0.8527 31500 1.6586 - - - -
0.8554 31600 1.6893 - - - -
0.8581 31700 1.7764 - - - -
0.8608 31800 1.3632 - - - -
0.8635 31900 1.6681 - - - -
0.8662 32000 1.6232 3.7358 0.7161 0.7232 0.4651
0.8689 32100 1.4556 - - - -
0.8716 32200 1.8698 - - - -
0.8743 32300 1.7566 - - - -
0.8770 32400 1.6082 - - - -
0.8797 32500 1.6465 - - - -
0.8824 32600 1.5018 - - - -
0.8851 32700 1.8482 - - - -
0.8878 32800 1.5147 - - - -
0.8905 32900 1.699 - - - -
0.8933 33000 1.5738 3.7323 0.7176 0.7246 0.4657
0.8960 33100 1.635 - - - -
0.8987 33200 1.7069 - - - -
0.9014 33300 1.6272 - - - -
0.9041 33400 1.7648 - - - -
0.9068 33500 1.6683 - - - -
0.9095 33600 1.4867 - - - -
0.9122 33700 1.6677 - - - -
0.9149 33800 1.5527 - - - -
0.9176 33900 1.6804 - - - -
0.9203 34000 1.425 3.7477 0.7172 0.7231 0.4596
0.9230 34100 1.771 - - - -
0.9257 34200 1.5767 - - - -
0.9284 34300 1.5424 - - - -
0.9312 34400 1.5985 - - - -
0.9339 34500 1.6763 - - - -
0.9366 34600 1.6608 - - - -
0.9393 34700 1.7736 - - - -
0.9420 34800 1.8955 - - - -
0.9447 34900 1.5688 - - - -
0.9474 35000 1.6123 3.7410 0.7196 0.7226 0.4671
0.9501 35100 1.7264 - - - -
0.9528 35200 1.5511 - - - -
0.9555 35300 1.6409 - - - -
0.9582 35400 1.47 - - - -
0.9609 35500 1.8675 - - - -
0.9636 35600 1.6868 - - - -
0.9663 35700 1.744 - - - -
0.9690 35800 1.6734 - - - -
0.9718 35900 1.4154 - - - -
0.9745 36000 1.4793 3.7393 0.7190 0.7223 0.4677
0.9772 36100 1.7126 - - - -
0.9799 36200 1.7037 - - - -
0.9826 36300 1.6306 - - - -
0.9853 36400 1.7783 - - - -
0.9880 36500 1.5751 - - - -
0.9907 36600 1.6079 - - - -
0.9934 36700 1.7162 - - - -
0.9961 36800 1.447 - - - -
0.9988 36900 1.6155 - - - -
1.0015 37000 1.7294 3.7512 0.7177 0.7236 0.4659

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.38.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.27.2
  • Datasets: 2.19.1
  • Tokenizers: 0.15.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, 
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}