metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:CachedMultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: 'search_query: shark'
sentences:
- 'search_query: skull'
- 'search_query: car picture frame'
- 'search_query: cartera de guchi'
- source_sentence: 'search_query: aolvo'
sentences:
- 'search_query: laço homem'
- 'search_query: vdi to hdmi cable'
- 'search_query: beads without holes'
- source_sentence: 'search_query: 赤色のカバン'
sentences:
- 'search_query: 結婚式 ガーランド'
- 'search_query: remaches zapatero'
- 'search_query: small feaux potted plants'
- source_sentence: 'search_query: vipkid'
sentences:
- 'search_query: ceiling lamps for kids'
- 'search_query: apple あいふぉんケース 12'
- 'search_query: zapatos zaragoza mujer'
- source_sentence: 'search_query: お布団バッグ'
sentences:
- 'search_query: 足なしソファー'
- 'search_query: all color handbag'
- 'search_query: tundra black out emblems'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet esci
type: triplet-esci
metrics:
- type: cosine_accuracy
value: 0.787
name: Cosine Accuracy
- type: dot_accuracy
value: 0.22
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.762
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.768
name: Euclidean Accuracy
- type: max_accuracy
value: 0.787
name: Max Accuracy
SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'search_query: お布団バッグ',
'search_query: 足なしソファー',
'search_query: all color handbag',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-esci
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.787 |
dot_accuracy | 0.22 |
manhattan_accuracy | 0.762 |
euclidean_accuracy | 0.768 |
max_accuracy | 0.787 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 12.11 tokens
- max: 47 tokens
- min: 17 tokens
- mean: 49.91 tokens
- max: 166 tokens
- min: 20 tokens
- mean: 50.64 tokens
- max: 152 tokens
- Samples:
anchor positive negative search_query: blー5c
search_document: [EnergyPower] TECSUN PL-368 電池2個セット SSB・同期検波・長波 [交換用バッテリーBL-5C付] デジタルDSPポケット短波ラジオ 超小型 長・中波用外付アンテナ 10キー ポータブルBCL受信機 FMステレオ/LW/MW/SW ワールドバンドレシーバー 850局プリセットメモリー シグナルメーター USB充電 スリープタイマー アラー, TECSUN, PL-368 電池+セット [ブラック]
search_document: RADIWOWで作る SIHUADON R108 ポータブル BCL短波ラジオAM FM LW SW 航空無線 DSPレシーバー LCD 良好屋内および屋外アクティビティの両親への贈り物, RADIWOW, グレー
search_query: かわいいロングtシャツ
search_document: レディース ロンt 半袖 tシャツ オーバーサイズ コットン スリット 大きいサイズ 白 シャツ ビッグシルエット ワンピース シャツワンピ ロングtシャツ おおきいサイズ 夏 ピンク カジュアル カップ付き カーディガン キラキラ キャミソール キャミ サテン シンプル シニア シフォン シースルー シ, Sleeping Sheep(スリーピング シープ), ホワイト
search_document: Perkisboby スポーツウェア レディース ヨガウェア 4点セット 上下セット 5点セットウェア フィットネス 2点セット ジャージ スポーツブラ パンツ パーカー 半袖 ハーフパンツ, Perkisboby, 2点セット-グレー
search_query: iphone xr otterbox symmetry case
search_document: Symmetry Clear Series Case for iPhone XR (ONLY) Symmetry Case for iPhone XR Symmetry Case - Clear, VTSOU, Clear
search_document: OtterBox Symmetry Series Case for Apple iPhone XS Max - Tonic Violet / Purple, OtterBox, Tonic Violet / Purple
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 12.13 tokens
- max: 49 tokens
- min: 15 tokens
- mean: 50.76 tokens
- max: 173 tokens
- min: 18 tokens
- mean: 54.25 tokens
- max: 161 tokens
- Samples:
anchor positive negative search_query: snack vending machine
search_document: Red All Metal Triple Compartment Commercial Vending Machine for 1 inch Gumballs, 1 inch Toy Capsules, Bouncy Balls, Candy, Nuts with Stand by American Gumball Company, American Gumball Company, CANDY RED
search_document: Vending Machine Halloween Costume - Funny Snack Food Adult Men & Women Outfits, Hauntlook, Multicolored
search_query: slim credit card holder without id window
search_document: Banuce Top Grain Leather Card Holder for Women Men Unisex ID Credit Card Case Slim Card Wallet Black, Banuce, 1 ID + 5 Card Slots: Black
search_document: Mens Wallet RFID Genuine Leather Bifold Wallets For Men, ID Window 16 Card Holders Gift Box, Swallowmall, Black Stripe
search_query: gucci belts for women
search_document: Gucci Women's Gg0027o 50Mm Optical Glasses, Gucci, Havana
search_document: Gucci G-Gucci Gold PVD Women's Watch(Model:YA125511), Gucci, PVD/Brown
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 2learning_rate
: 1e-06lr_scheduler_type
: cosinewarmup_ratio
: 0.1dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: 2load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: 2past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | triplet-esci_cosine_accuracy |
---|---|---|---|---|
0.008 | 100 | 0.7191 | - | - |
0.016 | 200 | 0.6917 | - | - |
0.024 | 300 | 0.7129 | - | - |
0.032 | 400 | 0.6826 | - | - |
0.04 | 500 | 0.7317 | - | - |
0.048 | 600 | 0.7237 | - | - |
0.056 | 700 | 0.6904 | - | - |
0.064 | 800 | 0.6815 | - | - |
0.072 | 900 | 0.6428 | - | - |
0.08 | 1000 | 0.6561 | 0.6741 | 0.74 |
0.088 | 1100 | 0.6097 | - | - |
0.096 | 1200 | 0.6426 | - | - |
0.104 | 1300 | 0.618 | - | - |
0.112 | 1400 | 0.6346 | - | - |
0.12 | 1500 | 0.611 | - | - |
0.128 | 1600 | 0.6092 | - | - |
0.136 | 1700 | 0.6512 | - | - |
0.144 | 1800 | 0.646 | - | - |
0.152 | 1900 | 0.6584 | - | - |
0.16 | 2000 | 0.6403 | 0.6411 | 0.747 |
0.168 | 2100 | 0.5882 | - | - |
0.176 | 2200 | 0.6361 | - | - |
0.184 | 2300 | 0.5641 | - | - |
0.192 | 2400 | 0.5734 | - | - |
0.2 | 2500 | 0.6156 | - | - |
0.208 | 2600 | 0.6252 | - | - |
0.216 | 2700 | 0.634 | - | - |
0.224 | 2800 | 0.5743 | - | - |
0.232 | 2900 | 0.5222 | - | - |
0.24 | 3000 | 0.5604 | 0.6180 | 0.765 |
0.248 | 3100 | 0.5864 | - | - |
0.256 | 3200 | 0.5541 | - | - |
0.264 | 3300 | 0.5661 | - | - |
0.272 | 3400 | 0.5493 | - | - |
0.28 | 3500 | 0.556 | - | - |
0.288 | 3600 | 0.56 | - | - |
0.296 | 3700 | 0.5552 | - | - |
0.304 | 3800 | 0.5833 | - | - |
0.312 | 3900 | 0.5578 | - | - |
0.32 | 4000 | 0.5495 | 0.6009 | 0.769 |
0.328 | 4100 | 0.5245 | - | - |
0.336 | 4200 | 0.477 | - | - |
0.344 | 4300 | 0.5536 | - | - |
0.352 | 4400 | 0.5493 | - | - |
0.36 | 4500 | 0.532 | - | - |
0.368 | 4600 | 0.5341 | - | - |
0.376 | 4700 | 0.528 | - | - |
0.384 | 4800 | 0.5574 | - | - |
0.392 | 4900 | 0.4953 | - | - |
0.4 | 5000 | 0.5365 | 0.5969 | 0.779 |
0.408 | 5100 | 0.4835 | - | - |
0.416 | 5200 | 0.4573 | - | - |
0.424 | 5300 | 0.5554 | - | - |
0.432 | 5400 | 0.5623 | - | - |
0.44 | 5500 | 0.5955 | - | - |
0.448 | 5600 | 0.5086 | - | - |
0.456 | 5700 | 0.5081 | - | - |
0.464 | 5800 | 0.4829 | - | - |
0.472 | 5900 | 0.5066 | - | - |
0.48 | 6000 | 0.4997 | 0.5920 | 0.776 |
0.488 | 6100 | 0.5075 | - | - |
0.496 | 6200 | 0.5051 | - | - |
0.504 | 6300 | 0.5019 | - | - |
0.512 | 6400 | 0.4774 | - | - |
0.52 | 6500 | 0.4975 | - | - |
0.528 | 6600 | 0.4756 | - | - |
0.536 | 6700 | 0.4656 | - | - |
0.544 | 6800 | 0.4671 | - | - |
0.552 | 6900 | 0.4646 | - | - |
0.56 | 7000 | 0.5595 | 0.5853 | 0.777 |
0.568 | 7100 | 0.4812 | - | - |
0.576 | 7200 | 0.506 | - | - |
0.584 | 7300 | 0.49 | - | - |
0.592 | 7400 | 0.464 | - | - |
0.6 | 7500 | 0.441 | - | - |
0.608 | 7600 | 0.4492 | - | - |
0.616 | 7700 | 0.457 | - | - |
0.624 | 7800 | 0.493 | - | - |
0.632 | 7900 | 0.4174 | - | - |
0.64 | 8000 | 0.4686 | 0.5809 | 0.785 |
0.648 | 8100 | 0.4529 | - | - |
0.656 | 8200 | 0.4784 | - | - |
0.664 | 8300 | 0.4697 | - | - |
0.672 | 8400 | 0.4489 | - | - |
0.68 | 8500 | 0.4439 | - | - |
0.688 | 8600 | 0.4063 | - | - |
0.696 | 8700 | 0.4634 | - | - |
0.704 | 8800 | 0.4446 | - | - |
0.712 | 8900 | 0.4725 | - | - |
0.72 | 9000 | 0.3954 | 0.5769 | 0.781 |
0.728 | 9100 | 0.4536 | - | - |
0.736 | 9200 | 0.4583 | - | - |
0.744 | 9300 | 0.4415 | - | - |
0.752 | 9400 | 0.4716 | - | - |
0.76 | 9500 | 0.4393 | - | - |
0.768 | 9600 | 0.4332 | - | - |
0.776 | 9700 | 0.4236 | - | - |
0.784 | 9800 | 0.4021 | - | - |
0.792 | 9900 | 0.4324 | - | - |
0.8 | 10000 | 0.4197 | 0.5796 | 0.78 |
0.808 | 10100 | 0.4576 | - | - |
0.816 | 10200 | 0.4238 | - | - |
0.824 | 10300 | 0.4468 | - | - |
0.832 | 10400 | 0.4301 | - | - |
0.84 | 10500 | 0.414 | - | - |
0.848 | 10600 | 0.4563 | - | - |
0.856 | 10700 | 0.4212 | - | - |
0.864 | 10800 | 0.3905 | - | - |
0.872 | 10900 | 0.4384 | - | - |
0.88 | 11000 | 0.3474 | 0.5709 | 0.788 |
0.888 | 11100 | 0.4396 | - | - |
0.896 | 11200 | 0.3819 | - | - |
0.904 | 11300 | 0.3748 | - | - |
0.912 | 11400 | 0.4217 | - | - |
0.92 | 11500 | 0.3893 | - | - |
0.928 | 11600 | 0.3835 | - | - |
0.936 | 11700 | 0.4303 | - | - |
0.944 | 11800 | 0.4274 | - | - |
0.952 | 11900 | 0.4089 | - | - |
0.96 | 12000 | 0.4009 | 0.5710 | 0.786 |
0.968 | 12100 | 0.3832 | - | - |
0.976 | 12200 | 0.3543 | - | - |
0.984 | 12300 | 0.4866 | - | - |
0.992 | 12400 | 0.4531 | - | - |
1.0 | 12500 | 0.3728 | - | - |
1.008 | 12600 | 0.386 | - | - |
1.016 | 12700 | 0.3622 | - | - |
1.024 | 12800 | 0.4013 | - | - |
1.032 | 12900 | 0.3543 | - | - |
1.04 | 13000 | 0.3918 | 0.5712 | 0.792 |
1.048 | 13100 | 0.3961 | - | - |
1.056 | 13200 | 0.3804 | - | - |
1.064 | 13300 | 0.4049 | - | - |
1.072 | 13400 | 0.3374 | - | - |
1.08 | 13500 | 0.3746 | - | - |
1.088 | 13600 | 0.3162 | - | - |
1.096 | 13700 | 0.3536 | - | - |
1.104 | 13800 | 0.3101 | - | - |
1.112 | 13900 | 0.3704 | - | - |
1.12 | 14000 | 0.3412 | 0.5758 | 0.788 |
1.1280 | 14100 | 0.342 | - | - |
1.1360 | 14200 | 0.383 | - | - |
1.144 | 14300 | 0.3554 | - | - |
1.152 | 14400 | 0.4013 | - | - |
1.16 | 14500 | 0.3486 | - | - |
1.168 | 14600 | 0.3367 | - | - |
1.176 | 14700 | 0.3737 | - | - |
1.184 | 14800 | 0.319 | - | - |
1.192 | 14900 | 0.3211 | - | - |
1.2 | 15000 | 0.3284 | 0.5804 | 0.787 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.38.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}