|
--- |
|
base_model: lupobricco/irony_classification_single_label_base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: ironita_finetuned_singlelabel_no_correlations |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ironita_finetuned_singlelabel_no_correlations |
|
|
|
This model is a fine-tuned version of [lupobricco/irony_classification_single_label_base](https://huggingface.co/lupobricco/irony_classification_single_label_base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0734 |
|
- Accuracy: 0.8162 |
|
- F1: 0.4358 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.4699 | 1.0 | 715 | 0.6672 | 0.8316 | 0.4141 | |
|
| 0.2082 | 2.0 | 1430 | 1.0734 | 0.8162 | 0.4358 | |
|
| 0.0699 | 3.0 | 2145 | 1.2288 | 0.8179 | 0.4059 | |
|
| 0.0356 | 4.0 | 2860 | 1.2345 | 0.8213 | 0.4194 | |
|
| 0.0245 | 5.0 | 3575 | 1.3995 | 0.8265 | 0.4007 | |
|
| 0.0137 | 6.0 | 4290 | 1.4029 | 0.8230 | 0.4222 | |
|
| 0.0166 | 7.0 | 5005 | 1.4924 | 0.8213 | 0.4000 | |
|
| 0.0079 | 8.0 | 5720 | 1.5032 | 0.8299 | 0.3961 | |
|
| 0.0126 | 9.0 | 6435 | 1.5878 | 0.8213 | 0.4285 | |
|
| 0.0046 | 10.0 | 7150 | 1.5537 | 0.8213 | 0.4050 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0+cu118 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|