|
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/349 |
|
# Pre-trained Transducer-Stateless2 models for the WenetSpeech dataset with icefall. |
|
The model was trained on the L subset of WenetSpeech with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. |
|
## Training procedure |
|
The main repositories are list below, we will update the training and decoding scripts with the update of version. |
|
k2: https://github.com/k2-fsa/k2 |
|
icefall: https://github.com/k2-fsa/icefall |
|
lhotse: https://github.com/lhotse-speech/lhotse |
|
* Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. |
|
* Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. |
|
``` |
|
git clone https://github.com/k2-fsa/icefall |
|
cd icefall |
|
``` |
|
* Preparing data. |
|
``` |
|
cd egs/wenetspeech/ASR |
|
bash ./prepare.sh |
|
``` |
|
* Training |
|
``` |
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" |
|
./pruned_transducer_stateless2/train.py \ |
|
--world-size 8 \ |
|
--num-epochs 15 \ |
|
--start-epoch 0 \ |
|
--exp-dir pruned_transducer_stateless2/exp \ |
|
--lang-dir data/lang_char \ |
|
--max-duration 180 \ |
|
--valid-interval 3000 \ |
|
--model-warm-step 3000 \ |
|
--save-every-n 8000 \ |
|
--training-subset L |
|
``` |
|
## Evaluation results |
|
The decoding results (WER%) on WenetSpeech(dev, test-net and test-meeting) are listed below, we got this result by averaging models from epoch 9 to 10. |
|
The WERs are |
|
| | dev | test-net | test-meeting | comment | |
|
|------------------------------------|-------|----------|--------------|------------------------------------------| |
|
| greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 | |
|
| modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 | |
|
| fast beam search (1best) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 | |
|
| fast beam search (nbest) | 9.82 | 10.98 | 16.37 | --epoch 10, --avg 2, --max-duration 600 | |
|
| fast beam search (nbest oracle) | 6.88 | 7.18 | 11.77 | --epoch 10, --avg 2, --max-duration 600 | |
|
| fast beam search (nbest LG) | 14.94 | 16.14 | 22.93 | --epoch 10, --avg 2, --max-duration 600 | |
|
|