bert-german-ner / README.md
lunesco's picture
Librarian Bot: Add base_model information to model (#2)
1e6045c
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: dbmdz/bert-base-german-cased
model-index:
  - name: bert-german-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - type: precision
            value: 0.8333588604686782
            name: Precision
          - type: recall
            value: 0.8620088719898605
            name: Recall
          - type: f1
            value: 0.8474417880227396
            name: F1
          - type: accuracy
            value: 0.9292245320451997
            name: Accuracy

bert-german-ner

This model is a fine-tuned version of dbmdz/bert-base-german-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3196
  • Precision: 0.8334
  • Recall: 0.8620
  • F1: 0.8474
  • Accuracy: 0.9292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 300 0.3617 0.7310 0.7733 0.7516 0.8908
0.5428 2.0 600 0.2897 0.7789 0.8395 0.8081 0.9132
0.5428 3.0 900 0.2805 0.8147 0.8465 0.8303 0.9221
0.2019 4.0 1200 0.2816 0.8259 0.8498 0.8377 0.9260
0.1215 5.0 1500 0.2942 0.8332 0.8599 0.8463 0.9285
0.1215 6.0 1800 0.3053 0.8293 0.8619 0.8452 0.9287
0.0814 7.0 2100 0.3190 0.8249 0.8634 0.8437 0.9267
0.0814 8.0 2400 0.3196 0.8334 0.8620 0.8474 0.9292

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2