luluw's picture
End of training
a9ac29c verified
|
raw
history blame
2.34 kB
metadata
library_name: transformers
language:
  - np
base_model: dexhrestha/Nepali-DistilBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Nepali-BERT-devangari-sentiment
    results: []

Nepali-BERT-devangari-sentiment

This model is a fine-tuned version of dexhrestha/Nepali-DistilBERT on the Custom Devangari Datasets dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5347
  • Accuracy: 0.8403
  • F1: 0.4837
  • Precision: 0.3875
  • Recall: 0.6435

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5776 1.0 1189 0.5874 0.8373 0.4543 0.3725 0.5823
0.4707 2.0 2378 0.5347 0.8403 0.4837 0.3875 0.6435
0.3921 3.0 3567 0.6306 0.8530 0.4732 0.4057 0.5675
0.3146 4.0 4756 0.8935 0.8719 0.4673 0.4526 0.4831
0.248 5.0 5945 1.1782 0.8776 0.4582 0.4720 0.4451
0.1978 6.0 7134 1.2942 0.8648 0.4687 0.4316 0.5127
0.1504 7.0 8323 1.5298 0.8663 0.4609 0.4339 0.4916
0.1259 8.0 9512 1.6731 0.8761 0.4432 0.4642 0.4241

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1