lu5 commited on
Commit
d4938b6
1 Parent(s): 7167e86

Model save

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-tiny-patch4-window8-256
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - food101
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: swinv2-tiny-patch4-window8-256-finetuned-eurosat
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: food101
18
+ type: food101
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8858613861386139
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # swinv2-tiny-patch4-window8-256-finetuned-eurosat
32
+
33
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the food101 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3997
36
+ - Accuracy: 0.8859
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.8552 | 1.0 | 592 | 1.1245 | 0.6955 |
71
+ | 1.2938 | 2.0 | 1184 | 0.6712 | 0.8131 |
72
+ | 1.2294 | 3.0 | 1776 | 0.5354 | 0.8492 |
73
+ | 1.0199 | 4.0 | 2368 | 0.4958 | 0.8594 |
74
+ | 0.9914 | 5.0 | 2960 | 0.4633 | 0.8678 |
75
+ | 0.8786 | 6.0 | 3552 | 0.4390 | 0.8750 |
76
+ | 0.806 | 7.0 | 4144 | 0.4206 | 0.8791 |
77
+ | 0.7506 | 8.0 | 4736 | 0.4093 | 0.8832 |
78
+ | 0.7433 | 9.0 | 5328 | 0.4053 | 0.8841 |
79
+ | 0.6393 | 10.0 | 5920 | 0.3997 | 0.8859 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.32.0
85
+ - Pytorch 2.0.1+cu118
86
+ - Datasets 2.14.4
87
+ - Tokenizers 0.13.3