bert-finetuned-ner / README.md
lsoni's picture
update model card README.md
8af10ae
|
raw
history blame
2.23 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - tweetner7
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: tweetner7
          type: tweetner7
          config: tweetner7
          split: validation_2021
          args: tweetner7
        metrics:
          - name: Precision
            type: precision
            value: 0.7025612778848802
          - name: Recall
            type: recall
            value: 0.6474619289340101
          - name: F1
            type: f1
            value: 0.6738872011623299
          - name: Accuracy
            type: accuracy
            value: 0.8775995608952857

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the tweetner7 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4089
  • Precision: 0.7026
  • Recall: 0.6475
  • F1: 0.6739
  • Accuracy: 0.8776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 312 0.4428 0.7259 0.5860 0.6485 0.8705
0.5414 2.0 624 0.4090 0.7146 0.6297 0.6695 0.8775
0.5414 3.0 936 0.4089 0.7026 0.6475 0.6739 0.8776

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3