metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0618
- Precision: 0.9318
- Recall: 0.9500
- F1: 0.9408
- Accuracy: 0.9859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0758 | 1.0 | 1756 | 0.0780 | 0.8803 | 0.9209 | 0.9001 | 0.9789 |
0.0335 | 2.0 | 3512 | 0.0716 | 0.9328 | 0.9443 | 0.9385 | 0.9844 |
0.022 | 3.0 | 5268 | 0.0618 | 0.9318 | 0.9500 | 0.9408 | 0.9859 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0