|
"""PyTorch OpenAI GPT-2 model modified with MultiQuery attention""" |
|
|
|
|
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.cuda.amp import autocast |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel, SequenceSummary |
|
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer |
|
|
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel |
|
from .configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY, MULTI_HEAD |
|
|
|
|
|
|
|
class GPT2MQAttention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False, layer_idx=None): |
|
super().__init__() |
|
assert config.attention_head_type == MULTI_QUERY |
|
|
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"bias", |
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( |
|
1, 1, max_positions, max_positions |
|
), |
|
) |
|
self.register_buffer("masked_bias", torch.tensor(-1e4)) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.split_size = self.embed_dim |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.scale_attn_weights = config.scale_attn_weights |
|
if is_cross_attention: |
|
raise NotImplementedError("Cross-attention not implemented for MQA") |
|
self.is_cross_attention = is_cross_attention |
|
|
|
|
|
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx |
|
self.layer_idx = layer_idx |
|
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn |
|
|
|
if self.is_cross_attention: |
|
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) |
|
self.q_attn = Conv1D(self.embed_dim, self.embed_dim) |
|
else: |
|
|
|
self.q_attn = Conv1D(self.embed_dim, self.embed_dim) |
|
|
|
self.kv_attn = Conv1D(2 * self.head_dim, self.embed_dim) |
|
self.c_proj = Conv1D(self.embed_dim, self.embed_dim) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) |
|
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) |
|
|
|
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) |
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) |
|
|
|
|
|
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) |
|
self.num_heads = self.num_heads - len(heads) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
|
|
|
|
|
|
batch_size = query.size(0) |
|
query_length = query.size(1) // self.num_heads |
|
key_length = key.size(2) |
|
|
|
attn_weights = torch.bmm(query, key) |
|
|
|
attn_weights = attn_weights.view(batch_size, self.num_heads, query_length, key_length) |
|
|
|
if self.scale_attn_weights: |
|
attn_weights = attn_weights / torch.tensor( |
|
value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device |
|
) |
|
|
|
|
|
if self.scale_attn_by_inverse_layer_idx: |
|
attn_weights = attn_weights / float(self.layer_idx + 1) |
|
|
|
if not self.is_cross_attention: |
|
|
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool) |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
|
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
|
|
_attn_weights = attn_weights.view(batch_size, self.num_heads * query_length, key_length) |
|
|
|
attn_output = torch.bmm(_attn_weights, value) |
|
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
|
|
bsz, num_heads, q_seq_len, dk = query.size() |
|
_, _, k_seq_len, _ = key.size() |
|
|
|
|
|
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) |
|
|
|
|
|
scale_factor = 1.0 |
|
if self.scale_attn_weights: |
|
scale_factor /= float(value.size(-1)) ** 0.5 |
|
|
|
if self.scale_attn_by_inverse_layer_idx: |
|
scale_factor /= float(self.layer_idx + 1) |
|
|
|
|
|
with autocast(enabled=False): |
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) |
|
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) |
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) |
|
|
|
if not self.is_cross_attention: |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool() |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
|
|
if attn_weights.dtype != torch.float32: |
|
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") |
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _split_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Splits hidden_size dim into attn_head_size and num_heads |
|
""" |
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
|
tensor = tensor.view(new_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def _merge_heads(self, tensor, num_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size |
|
""" |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: |
|
if encoder_hidden_states is not None: |
|
raise NotImplementedError("Cross-attention not implemented for MQA") |
|
if not hasattr(self, "q_attn"): |
|
raise ValueError( |
|
"If class is used as cross attention, the weights `q_attn` have to be defined. " |
|
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." |
|
) |
|
|
|
query = self.q_attn(hidden_states) |
|
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
query = self.q_attn(hidden_states) |
|
key, value = self.kv_attn(hidden_states).split(self.head_dim, dim=2) |
|
|
|
|
|
batch_size, seq_length = query.shape[:2] |
|
|
|
|
|
|
|
|
|
query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).permute([0, 2, 1, 3]) |
|
|
|
query = query.reshape(batch_size, self.num_heads * seq_length, self.head_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
key = key.permute(0, 2, 1) |
|
|
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
|
|
key = torch.cat((past_key, key), dim=-1) |
|
value = torch.cat((past_value, value), dim=-2) |
|
|
|
if use_cache is True: |
|
present = (key, value) |
|
else: |
|
present = None |
|
|
|
if self.reorder_and_upcast_attn: |
|
raise NotImplementedError("Reorder and upcast attention not implemented for MQA") |
|
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask) |
|
else: |
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) |
|
|
|
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) |
|
attn_output = self.c_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class GPT2CustomBlock(GPT2Block): |
|
|
|
def __init__(self, config: GPT2CustomConfig, layer_idx=None): |
|
super().__init__(config, layer_idx) |
|
|
|
if config.attention_head_type == MULTI_QUERY: |
|
self.attn = GPT2MQAttention(config, layer_idx=layer_idx) |
|
if config.add_cross_attention: |
|
raise NotImplementedError("Cross-attention not implemented for MQA") |
|
|
|
|
|
|
|
class GPT2CustomModel(GPT2Model): |
|
config_class = GPT2CustomConfig |
|
|
|
def __init__(self, config): |
|
GPT2PreTrainedModel.__init__(self, config) |
|
|
|
self.embed_dim = config.hidden_size |
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) |
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) |
|
|
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) |
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
class GPT2LMHeadCustomModel(GPT2LMHeadModel): |
|
config_class = GPT2CustomConfig |
|
|
|
def __init__(self, config): |
|
GPT2PreTrainedModel.__init__(self, config) |
|
self.transformer = GPT2CustomModel(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|