whisper-medium-ar / README.md
lorenzoncina's picture
update model card README.md
b14ad6e
metadata
language:
  - ar
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Arabic
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 ar
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 47.53066666666667

Whisper Medium Arabic

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 ar dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4218
  • Wer: 47.5307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2215 0.1 1000 0.3361 49.9307
0.1134 1.07 2000 0.3290 56.76
0.0765 2.04 3000 0.3400 54.3947
0.0417 3.01 4000 0.3599 52.5320
0.0364 3.11 5000 0.3740 55.5653
0.0094 4.08 6000 0.4152 56.4307
0.0077 5.05 7000 0.4218 47.5307
0.0018 6.02 8000 0.4556 50.0493
0.0012 6.12 9000 0.4760 54.8147
0.0009 7.09 10000 0.4711 48.7533

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.1.dev0
  • Tokenizers 0.13.2