lombardata's picture
Upload README.md
cadc474 verified
|
raw
history blame
8.7 kB
---
language:
- eng
license: cc0-1.0
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
base_model: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs
model-index:
- name: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs
results: []
---
drone-DinoVdeau-from-probs is a fine-tuned version of [drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs](https://huggingface.co/drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs). It achieves the following results on the test set:
- Loss: 0.4668
- RMSE: 0.1546
- MAE: 0.1143
- KL Divergence: 0.3931
---
# Model description
drone-DinoVdeau-from-probs is a model built on top of drone-DinoVdeau-from-probs-large-2024_11_15-batch-size32_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
---
# Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
---
# Training and evaluation data
Details on the estimated number of images for each class are given in the following table:
| Class | train | test | val | Total |
|:------------------------|--------:|-------:|------:|--------:|
| Acropore_branched | 1220 | 363 | 362 | 1945 |
| Acropore_digitised | 586 | 195 | 189 | 970 |
| Acropore_tabular | 308 | 133 | 119 | 560 |
| Algae | 4777 | 1372 | 1384 | 7533 |
| Dead_coral | 2513 | 671 | 693 | 3877 |
| Millepore | 136 | 55 | 59 | 250 |
| No_acropore_encrusting | 252 | 88 | 93 | 433 |
| No_acropore_massive | 2158 | 725 | 726 | 3609 |
| No_acropore_sub_massive | 2036 | 582 | 612 | 3230 |
| Rock | 5976 | 1941 | 1928 | 9845 |
| Rubble | 4851 | 1486 | 1474 | 7811 |
| Sand | 6155 | 2019 | 1990 | 10164 |
---
# Training procedure
## Training hyperparameters
The following hyperparameters were used during training:
- **Number of Epochs**: 83.0
- **Learning Rate**: 0.001
- **Train Batch Size**: 32
- **Eval Batch Size**: 32
- **Optimizer**: Adam
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- **Freeze Encoder**: Yes
- **Data Augmentation**: Yes
## Data Augmentation
Data were augmented using the following transformations :
Train Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **RandomHorizontalFlip**: probability=0.25
- **RandomVerticalFlip**: probability=0.25
- **ColorJiggle**: probability=0.25
- **RandomPerspective**: probability=0.25
- **Normalize**: probability=1.00
Val Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **Normalize**: probability=1.00
## Training results
Epoch | Validation Loss | MAE | RMSE | KL div | Learning Rate
--- | --- | --- | --- | --- | ---
1 | 0.4855400025844574 | 0.1364 | 0.1771 | 0.3101 | 0.001
2 | 0.47601452469825745 | 0.1247 | 0.1688 | 0.5077 | 0.001
3 | 0.4776814579963684 | 0.1230 | 0.1707 | 0.7896 | 0.001
4 | 0.47429159283638 | 0.1238 | 0.1672 | 0.4932 | 0.001
5 | 0.47457176446914673 | 0.1277 | 0.1669 | 0.2901 | 0.001
6 | 0.4749792814254761 | 0.1253 | 0.1674 | 0.4399 | 0.001
7 | 0.4744807779788971 | 0.1259 | 0.1671 | 0.4868 | 0.001
8 | 0.47424906492233276 | 0.1257 | 0.1672 | 0.3241 | 0.001
9 | 0.4729686379432678 | 0.1236 | 0.1658 | 0.4560 | 0.001
10 | 0.4750550389289856 | 0.1269 | 0.1679 | 0.2141 | 0.001
11 | 0.4733181595802307 | 0.1265 | 0.1663 | 0.2530 | 0.001
12 | 0.4758349061012268 | 0.1264 | 0.1684 | 0.3966 | 0.001
13 | 0.4722050428390503 | 0.1223 | 0.1650 | 0.6055 | 0.001
14 | 0.4747372567653656 | 0.1250 | 0.1666 | 0.4203 | 0.001
15 | 0.47325292229652405 | 0.1227 | 0.1662 | 0.6553 | 0.001
16 | 0.4734710156917572 | 0.1241 | 0.1656 | 0.3576 | 0.001
17 | 0.4721581041812897 | 0.1221 | 0.1643 | 0.4545 | 0.001
18 | 0.4723944365978241 | 0.1225 | 0.1647 | 0.4902 | 0.001
19 | 0.47289156913757324 | 0.1261 | 0.1650 | 0.3158 | 0.001
20 | 0.4697262644767761 | 0.1203 | 0.1623 | 0.4574 | 0.0001
21 | 0.46890661120414734 | 0.1197 | 0.1613 | 0.4569 | 0.0001
22 | 0.46905258297920227 | 0.1202 | 0.1617 | 0.4535 | 0.0001
23 | 0.4691086411476135 | 0.1210 | 0.1614 | 0.2971 | 0.0001
24 | 0.46915334463119507 | 0.1196 | 0.1616 | 0.3916 | 0.0001
25 | 0.4676876664161682 | 0.1181 | 0.1601 | 0.4516 | 0.0001
26 | 0.4679708480834961 | 0.1171 | 0.1605 | 0.6089 | 0.0001
27 | 0.4674595892429352 | 0.1182 | 0.1600 | 0.4741 | 0.0001
28 | 0.46810340881347656 | 0.1200 | 0.1606 | 0.3356 | 0.0001
29 | 0.4678303897380829 | 0.1181 | 0.1603 | 0.4330 | 0.0001
30 | 0.46800243854522705 | 0.1194 | 0.1602 | 0.3160 | 0.0001
31 | 0.4676785469055176 | 0.1179 | 0.1600 | 0.4190 | 0.0001
32 | 0.46752873063087463 | 0.1188 | 0.1598 | 0.3706 | 0.0001
33 | 0.46710190176963806 | 0.1181 | 0.1593 | 0.3504 | 0.0001
34 | 0.4670344293117523 | 0.1180 | 0.1594 | 0.3881 | 0.0001
35 | 0.4662601053714752 | 0.1166 | 0.1587 | 0.4398 | 0.0001
36 | 0.46657058596611023 | 0.1170 | 0.1587 | 0.4382 | 0.0001
37 | 0.4657588005065918 | 0.1163 | 0.1581 | 0.4330 | 0.0001
38 | 0.4659184217453003 | 0.1162 | 0.1583 | 0.4878 | 0.0001
39 | 0.46703553199768066 | 0.1178 | 0.1595 | 0.3791 | 0.0001
40 | 0.4664987027645111 | 0.1178 | 0.1588 | 0.3889 | 0.0001
41 | 0.46659526228904724 | 0.1184 | 0.1589 | 0.3222 | 0.0001
42 | 0.4655005633831024 | 0.1164 | 0.1579 | 0.4262 | 0.0001
43 | 0.4656265676021576 | 0.1162 | 0.1579 | 0.4611 | 0.0001
44 | 0.4655725955963135 | 0.1164 | 0.1580 | 0.4586 | 0.0001
45 | 0.46600833535194397 | 0.1158 | 0.1583 | 0.4368 | 0.0001
46 | 0.4660418927669525 | 0.1164 | 0.1582 | 0.4118 | 0.0001
47 | 0.46521857380867004 | 0.1154 | 0.1577 | 0.5424 | 0.0001
48 | 0.46598610281944275 | 0.1160 | 0.1586 | 0.5251 | 0.0001
49 | 0.46604350209236145 | 0.1161 | 0.1585 | 0.5007 | 0.0001
50 | 0.46660009026527405 | 0.1185 | 0.1586 | 0.2424 | 0.0001
51 | 0.4660661220550537 | 0.1162 | 0.1584 | 0.4171 | 0.0001
52 | 0.4649689793586731 | 0.1155 | 0.1575 | 0.4912 | 0.0001
53 | 0.4653578996658325 | 0.1169 | 0.1578 | 0.4030 | 0.0001
54 | 0.4660585820674896 | 0.1153 | 0.1585 | 0.4811 | 0.0001
55 | 0.46527624130249023 | 0.1167 | 0.1576 | 0.3774 | 0.0001
56 | 0.4654240906238556 | 0.1176 | 0.1575 | 0.3254 | 0.0001
57 | 0.4654492139816284 | 0.1162 | 0.1575 | 0.3649 | 0.0001
58 | 0.46654412150382996 | 0.1166 | 0.1584 | 0.4075 | 0.0001
59 | 0.465238481760025 | 0.1157 | 0.1575 | 0.4202 | 1e-05
60 | 0.46530231833457947 | 0.1157 | 0.1571 | 0.4084 | 1e-05
61 | 0.4653523564338684 | 0.1153 | 0.1573 | 0.4497 | 1e-05
62 | 0.46477487683296204 | 0.1153 | 0.1568 | 0.4112 | 1e-05
63 | 0.46481335163116455 | 0.1152 | 0.1567 | 0.3748 | 1e-05
64 | 0.46523070335388184 | 0.1162 | 0.1571 | 0.3044 | 1e-05
65 | 0.46484872698783875 | 0.1153 | 0.1569 | 0.4685 | 1e-05
66 | 0.46500927209854126 | 0.1148 | 0.1573 | 0.5087 | 1e-05
67 | 0.4645930230617523 | 0.1155 | 0.1568 | 0.4274 | 1e-05
68 | 0.46456360816955566 | 0.1144 | 0.1566 | 0.4969 | 1e-05
69 | 0.464430034160614 | 0.1145 | 0.1564 | 0.4480 | 1e-05
70 | 0.4648461937904358 | 0.1150 | 0.1567 | 0.4291 | 1e-05
71 | 0.4645022749900818 | 0.1156 | 0.1565 | 0.3797 | 1e-05
72 | 0.46473589539527893 | 0.1150 | 0.1569 | 0.4280 | 1e-05
73 | 0.46414923667907715 | 0.1142 | 0.1563 | 0.4592 | 1e-05
74 | 0.4641610085964203 | 0.1151 | 0.1564 | 0.4321 | 1e-05
75 | 0.4644509255886078 | 0.1152 | 0.1565 | 0.3843 | 1e-05
76 | 0.4646488130092621 | 0.1147 | 0.1569 | 0.5216 | 1e-05
77 | 0.46475714445114136 | 0.1152 | 0.1569 | 0.4094 | 1e-05
78 | 0.46428272128105164 | 0.1149 | 0.1564 | 0.4399 | 1e-05
79 | 0.4645934998989105 | 0.1147 | 0.1567 | 0.4178 | 1e-05
80 | 0.46436014771461487 | 0.1150 | 0.1564 | 0.4373 | 1.0000000000000002e-06
81 | 0.46448636054992676 | 0.1151 | 0.1567 | 0.4701 | 1.0000000000000002e-06
82 | 0.4644375145435333 | 0.1146 | 0.1565 | 0.4601 | 1.0000000000000002e-06
83 | 0.46457409858703613 | 0.1147 | 0.1567 | 0.4511 | 1.0000000000000002e-06
---
# Framework Versions
- **Transformers**: 4.41.0
- **Pytorch**: 2.5.0+cu124
- **Datasets**: 3.0.2
- **Tokenizers**: 0.19.1