lole25's picture
End of training
61e7afa verified
|
raw
history blame
2.3 kB
metadata
license: mit
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
base_model: microsoft/phi-2
model-index:
  - name: phi-2-gpo-ultrachat-lora-2
    results: []

phi-2-gpo-ultrachat-lora-2

This model is a fine-tuned version of lole25/phi-2-sft-ultrachat-lora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0100
  • Rewards/chosen: -0.0005
  • Rewards/rejected: -0.0009
  • Rewards/accuracies: 0.2620
  • Rewards/margins: 0.0004
  • Logps/rejected: -94.2882
  • Logps/chosen: -91.7769
  • Logits/rejected: 0.8176
  • Logits/chosen: 0.7994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.01 1.04 100 0.0100 -0.0004 -0.0007 0.25 0.0003 -94.2623 -91.7671 0.8188 0.8011

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.14.6
  • Tokenizers 0.15.2