lole25's picture
End of training
50da108 verified
|
raw
history blame
2.87 kB
metadata
license: mit
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
base_model: microsoft/phi-2
model-index:
  - name: phi-2-dpo-ultrachat-lora
    results: []

phi-2-dpo-ultrachat-lora

This model is a fine-tuned version of lole25/phi-2-sft-ultrachat-lora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6912
  • Rewards/chosen: -0.0072
  • Rewards/rejected: -0.0111
  • Rewards/accuracies: 0.3180
  • Rewards/margins: 0.0040
  • Logps/rejected: -95.3090
  • Logps/chosen: -92.4438
  • Logits/rejected: 0.8021
  • Logits/chosen: 0.7828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.693 0.21 100 0.6931 -0.0005 -0.0008 0.2680 0.0004 -94.2804 -91.7748 0.8176 0.7998
0.6922 0.42 200 0.6924 -0.0018 -0.0032 0.3020 0.0014 -94.5141 -91.9068 0.8121 0.7941
0.6917 0.63 300 0.6917 -0.0049 -0.0077 0.3100 0.0028 -94.9659 -92.2189 0.8057 0.7870
0.6905 0.84 400 0.6913 -0.0070 -0.0105 0.3280 0.0036 -95.2509 -92.4247 0.8012 0.7827

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.14.6
  • Tokenizers 0.15.2