lodrick-the-lafted commited on
Commit
c4b3afb
1 Parent(s): 541bd3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -118
README.md CHANGED
@@ -1,124 +1,12 @@
1
  ---
2
  license: apache-2.0
 
 
3
  library_name: transformers
 
 
4
  ---
5
 
6
- <div align='center'>
7
- <h1>Emu3: Next-Token Prediction is All You Need</h1h1>
8
- <h3></h3>
9
 
10
- [Emu3 Team, BAAI](https://www.baai.ac.cn/english.html)
11
-
12
- | [Project Page](https://emu.baai.ac.cn) | [Paper](https://baai-solution.ks3-cn-beijing.ksyuncs.com/emu3/Emu3-tech-report.pdf?KSSAccessKeyId=AKLTgew6Kdg6RsK92QSfB2KLA&Expires=2591406552&Signature=6BvwfLVqvfww26Bhwvk3mG0FrL8%3D) | [🤗HF Models](https://huggingface.co/collections/BAAI/emu3-66f4e64f70850ff358a2e60f) | [github](https://github.com/baaivision/Emu3)
13
- |
14
-
15
-
16
- </div>
17
-
18
- <div align='center'>
19
- <img src="https://github.com/baaivision/Emu3/blob/main/assets/arch.png?raw=True" class="interpolation-image" alt="arch." height="80%" width="70%" />
20
- </div>
21
-
22
- We introduce **Emu3**, a new suite of state-of-the-art multimodal models trained solely with **<i>next-token prediction</i>**! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences.
23
-
24
- ### Emu3 excels in both generation and perception
25
- **Emu3** outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures.
26
-
27
- <div align='center'>
28
- <img src="https://github.com/baaivision/Emu3/blob/main/assets/comparison.png?raw=True" class="interpolation-image" alt="comparison." height="80%" width="80%" />
29
- </div>
30
-
31
- ### Highlights
32
-
33
- - **Emu3** is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles.
34
- - **Emu3** shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM.
35
- - **Emu3** simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next.
36
-
37
-
38
-
39
- #### Quickstart
40
-
41
- ```python
42
- from PIL import Image
43
- from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM
44
- from transformers.generation.configuration_utils import GenerationConfig
45
- from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor
46
- import torch
47
-
48
- import sys
49
- sys.path.append(PATH_TO_BAAI_Emu3-Gen_MODEL)
50
- from processing_emu3 import Emu3Processor
51
-
52
- # model path
53
- EMU_HUB = "BAAI/Emu3-Gen"
54
- VQ_HUB = "BAAI/Emu3-VisionTokenizer"
55
-
56
- # prepare model and processor
57
- model = AutoModelForCausalLM.from_pretrained(
58
- EMU_HUB,
59
- device_map="cuda:0",
60
- torch_dtype=torch.bfloat16,
61
- attn_implementation="flash_attention_2",
62
- trust_remote_code=True,
63
- )
64
-
65
- tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True)
66
- image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
67
- image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
68
- processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
69
-
70
- # prepare input
71
- POSITIVE_PROMPT = " masterpiece, film grained, best quality."
72
- NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
73
-
74
- classifier_free_guidance = 3.0
75
- prompt = "a portrait of young girl."
76
- prompt += POSITIVE_PROMPT
77
-
78
- kwargs = dict(
79
- mode='G',
80
- ratio="1:1",
81
- image_area=model.config.image_area,
82
- return_tensors="pt",
83
- )
84
- pos_inputs = processor(text=prompt, **kwargs)
85
- neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)
86
-
87
- # prepare hyper parameters
88
- GENERATION_CONFIG = GenerationConfig(
89
- use_cache=True,
90
- eos_token_id=model.config.eos_token_id,
91
- pad_token_id=model.config.pad_token_id,
92
- max_new_tokens=40960,
93
- do_sample=True,
94
- top_k=2048,
95
- )
96
-
97
- h, w = pos_inputs.image_size[0]
98
- constrained_fn = processor.build_prefix_constrained_fn(h, w)
99
- logits_processor = LogitsProcessorList([
100
- UnbatchedClassifierFreeGuidanceLogitsProcessor(
101
- classifier_free_guidance,
102
- model,
103
- unconditional_ids=neg_inputs.input_ids.to("cuda:0"),
104
- ),
105
- PrefixConstrainedLogitsProcessor(
106
- constrained_fn ,
107
- num_beams=1,
108
- ),
109
- ])
110
-
111
- # generate
112
- outputs = model.generate(
113
- pos_inputs.input_ids.to("cuda:0"),
114
- GENERATION_CONFIG,
115
- logits_processor=logits_processor
116
- )
117
-
118
- mm_list = processor.decode(outputs[0])
119
- for idx, im in enumerate(mm_list):
120
- if not isinstance(im, Image.Image):
121
- continue
122
- im.save(f"result_{idx}.png")
123
-
124
- ```
 
1
  ---
2
  license: apache-2.0
3
+ base_model:
4
+ - BAAI/Emu3-Gen
5
  library_name: transformers
6
+ tags:
7
+ - merge
8
  ---
9
 
10
+ This is an interpolated upscale of [BAAI/Emu3-Gen](https://huggingface.co/BAAI/Emu3-Gen) from 8B to 11.5B.
11
+ For each layer in [7,8,9,10,11,12,13,14,15,16,22,23,24], the weights were lerp'd between the previous layer and the current and inserted between the two.
 
12