Llama-2-7B-ggml / README.md
x0001's picture
Duplicate from localmodels/LLM
d179fd4
|
raw
history blame
2.85 kB
metadata
duplicated_from: localmodels/LLM

Llama 2 7B ggml

From: https://huggingface.co/meta-llama/Llama-2-7b-hf


Original llama.cpp quant methods: q4_0, q4_1, q5_0, q5_1, q8_0

Quantized using an older version of llama.cpp and compatible with llama.cpp from May 19, commit 2d5db48.

k-quant methods: q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K

Quantization methods compatible with latest llama.cpp from June 6, commit 2d43387.


Provided files

Name Quant method Bits Size Max RAM required, no GPU offloadingd Use case
llama-2-7b.ggmlv3.q2_K.bin q2_K 2 2.87 GB 5.37 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
llama-2-7b.ggmlv3.q3_K_L.bin q3_K_L 3 3.60 GB 6.10 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
llama-2-7b.ggmlv3.q3_K_M.bin q3_K_M 3 3.28 GB 5.78 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
llama-2-7b.ggmlv3.q3_K_S.bin q3_K_S 3 2.95 GB 5.45 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
llama-2-7b.ggmlv3.q4_0.bin q4_0 4 3.79 GB 6.29 GB Original quant method, 4-bit.
llama-2-7b.ggmlv3.q4_1.bin q4_1 4 4.21 GB 6.71 GB Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
llama-2-7b.ggmlv3.q4_K_M.bin q4_K_M 4 4.08 GB 6.58 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
llama-2-7b.ggmlv3.q4_K_S.bin q4_K_S 4 3.83 GB 6.33 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
llama-2-7b.ggmlv3.q5_0.bin q5_0 5 4.63 GB 7.13 GB Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
llama-2-7b.ggmlv3.q5_1.bin q5_1 5 5.06 GB 7.56 GB Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
llama-2-7b.ggmlv3.q5_K_M.bin q5_K_M 5 4.78 GB 7.28 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
llama-2-7b.ggmlv3.q5_K_S.bin q5_K_S 5 4.65 GB 7.15 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
llama-2-7b.ggmlv3.q6_K.bin q6_K 6 5.53 GB 8.03 GB New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization
llama-2-7b.ggmlv3.q8_0.bin q8_0 8 7.16 GB 9.66 GB Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.