Text Generation
Transformers
llama
Inference Endpoints
x0001 commited on
Commit
64f94b3
0 Parent(s):

Duplicate from localmodels/LLM

Browse files
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
Guanaco-7B-GPTQ-4bit-128g.no-act-order.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d70dcf049fba5385a1f97691eb3e50b09d655c4e6e686b2aca568052f079f60a
3
+ size 3996053352
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ duplicated_from: localmodels/LLM
3
+ ---
4
+ # Guanaco 7B GPTQ
5
+
6
+ From: https://huggingface.co/timdettmers/guanaco-7b
7
+
8
+ ---
9
+
10
+ ## Model
11
+
12
+ * Guanaco-7B-GPTQ-4bit-128g.no-act-order.safetensors
13
+ * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
14
+ * Works with AutoGPTQ
15
+ * Parameters: Groupsize = 128. No act-order.
16
+
17
+ ---
18
+
19
+ # Guanaco Models Based on LLaMA
20
+
21
+ | [Paper](https://arxiv.org/abs/2305.14314) | [Code](https://github.com/artidoro/qlora) | [Demo](https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi) |
22
+
23
+ **The Guanaco models are open-source finetuned chatbots obtained through 4-bit QLoRA tuning of LLaMA base models on the OASST1 dataset. They are available in 7B, 13B, 33B, and 65B parameter sizes.**
24
+
25
+ ⚠️Guanaco is a model purely intended for research purposes and could produce problematic outputs.
26
+
27
+ ## Why use Guanaco?
28
+ - **Competitive with commercial chatbot systems on the Vicuna and OpenAssistant benchmarks** (ChatGPT and BARD) according to human and GPT-4 raters. We note that the relative performance on tasks not covered in these benchmarks could be very different. In addition, commercial systems evolve over time (we used outputs from the March 2023 version of the models).
29
+ - **Available open-source for research purposes**. Guanaco models allow *cheap* and *local* experimentation with high-quality chatbot systems.
30
+ - **Replicable and efficient training procedure** that can be extended to new use cases. Guanaco training scripts are available in the [QLoRA repo](https://github.com/artidoro/qlora).
31
+ - **Rigorous comparison to 16-bit methods** (both 16-bit full-finetuning and LoRA) in [our paper](https://arxiv.org/abs/2305.14314) demonstrates the effectiveness of 4-bit QLoRA finetuning.
32
+ - **Lightweight** checkpoints which only contain adapter weights.
33
+
34
+ ## License and Intended Use
35
+ Guanaco adapter weights are available under Apache 2 license. Note the use of the Guanaco adapter weights, requires access to the LLaMA model weighs.
36
+ Guanaco is based on LLaMA and therefore should be used according to the LLaMA license.
37
+
38
+ ## Usage
39
+ Here is an example of how you would load Guanaco 7B in 4-bits:
40
+ ```python
41
+ import torch
42
+ from peft import PeftModel
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
44
+
45
+ model_name = "huggyllama/llama-7b"
46
+ adapters_name = 'timdettmers/guanaco-7b'
47
+
48
+ model = AutoModelForCausalLM.from_pretrained(
49
+ model_name,
50
+ load_in_4bit=True,
51
+ torch_dtype=torch.bfloat16,
52
+ device_map="auto",
53
+ max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())},
54
+ quantization_config=BitsAndBytesConfig(
55
+ load_in_4bit=True,
56
+ bnb_4bit_compute_dtype=torch.bfloat16,
57
+ bnb_4bit_use_double_quant=True,
58
+ bnb_4bit_quant_type='nf4'
59
+ ),
60
+ )
61
+ model = PeftModel.from_pretrained(model, adapters_name)
62
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
63
+
64
+ ```
65
+ Inference can then be performed as usual with HF models as follows:
66
+ ```python
67
+ prompt = "Introduce yourself"
68
+ formatted_prompt = (
69
+ f"A chat between a curious human and an artificial intelligence assistant."
70
+ f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
71
+ f"### Human: {prompt} ### Assistant:"
72
+ )
73
+ inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0")
74
+ outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=20)
75
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
76
+ ```
77
+ Expected output similar to the following:
78
+ ```
79
+ A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
80
+ ### Human: Introduce yourself ### Assistant: I am an artificial intelligence assistant. I am here to help you with any questions you may have.
81
+ ```
82
+
83
+
84
+ ## Current Inference Limitations
85
+ Currently, 4-bit inference is slow. We recommend loading in 16 bits if inference speed is a concern. We are actively working on releasing efficient 4-bit inference kernels.
86
+
87
+ Below is how you would load the model in 16 bits:
88
+ ```python
89
+ model_name = "huggyllama/llama-7b"
90
+ adapters_name = 'timdettmers/guanaco-7b'
91
+ model = AutoModelForCausalLM.from_pretrained(
92
+ model_name,
93
+ torch_dtype=torch.bfloat16,
94
+ device_map="auto",
95
+ max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())},
96
+ )
97
+ model = PeftModel.from_pretrained(model, adapters_name)
98
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
99
+
100
+ ```
101
+
102
+
103
+ ## Model Card
104
+ **Architecture**: The Guanaco models are LoRA adapters to be used on top of LLaMA models. They are added to all layers. For all model sizes, we use $r=64$.
105
+
106
+ **Base Model**: Guanaco uses LLaMA as base model with sizes 7B, 13B, 33B, 65B. LLaMA is a causal language model pretrained on a large corpus of text. See [LLaMA paper](https://arxiv.org/abs/2302.13971) for more details. Note that Guanaco can inherit biases and limitations of the base model.
107
+
108
+ **Finetuning Data**: Guanaco is finetuned on OASST1. The exact dataset is available at [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco).
109
+
110
+ **Languages**: The OASST1 dataset is multilingual (see [the paper](https://arxiv.org/abs/2304.07327) for details) and as such Guanaco responds to user queries in different languages. We note, however, that OASST1 is heavy in high-resource languages. In addition, human evaluation of Guanaco was only performed in English and based on qualitative analysis we observed degradation in performance in other languages.
111
+
112
+ Next, we describe Training and Evaluation details.
113
+
114
+ ### Training
115
+ Guanaco models are the result of 4-bit QLoRA supervised finetuning on the OASST1 dataset.
116
+
117
+ All models use NormalFloat4 datatype for the base model and LoRA adapters on all linear layers with BFloat16 as computation datatype. We set LoRA $r=64$, $\alpha=16$. We also use Adam beta2 of 0.999, max grad norm of 0.3 and LoRA dropout of 0.1 for models up to 13B and 0.05 for 33B and 65B models.
118
+ For the finetuning process, we use constant learning rate schedule and paged AdamW optimizer.
119
+
120
+ ### Training hyperparameters
121
+ Size| Dataset | Batch Size | Learning Rate | Max Steps | Sequence length
122
+ ---|---|---|---|---|---
123
+ 7B | OASST1 | 16 | 2e-4 | 1875 | 512
124
+ 13B | OASST1 | 16 | 2e-4 | 1875 | 512
125
+ 33B | OASST1 | 16 | 1e-4 | 1875 | 512
126
+ 65B | OASST1 | 16 | 1e-4 | 1875 | 512
127
+
128
+ ### Evaluation
129
+ We test generative language capabilities through both automated and human evaluations. This second set of evaluations relies on queries curated by humans and aims at measuring the quality of model responses. We use the Vicuna and OpenAssistant datasets with 80 and 953 prompts respectively.
130
+
131
+ In both human and automated evaluations, for each prompt, raters compare all pairs of responses across the models considered. For human raters we randomize the order of the systems, for GPT-4 we evaluate with both orders.
132
+
133
+
134
+ Benchmark | Vicuna | | Vicuna | | OpenAssistant | | -
135
+ -----------|----|-----|--------|---|---------------|---|---
136
+ Prompts | 80 | | 80 | | 953 | |
137
+ Judge | Human | | GPT-4 | | GPT-4 | |
138
+ Model | Elo | Rank | Elo | Rank | Elo | Rank | **Median Rank**
139
+ GPT-4 | 1176 | 1 | 1348 | 1 | 1294 | 1 | 1
140
+ Guanaco-65B | 1023 | 2 | 1022 | 2 | 1008 | 3 | 2
141
+ Guanaco-33B | 1009 | 4 | 992 | 3 | 1002 | 4 | 4
142
+ ChatGPT-3.5 Turbo | 916 | 7 | 966 | 5 | 1015 | 2 | 5
143
+ Vicuna-13B | 984 | 5 | 974 | 4 | 936 | 5 | 5
144
+ Guanaco-13B | 975 | 6 | 913 | 6 | 885 | 6 | 6
145
+ Guanaco-7B | 1010 | 3 | 879 | 8 | 860 | 7 | 7
146
+ Bard | 909 | 8 | 902 | 7 | - | - | 8
147
+
148
+
149
+ We also use the MMLU benchmark to measure performance on a range of language understanding tasks. This is a multiple-choice benchmark covering 57 tasks including elementary mathematics, US history, computer science, law, and more. We report 5-shot test accuracy.
150
+
151
+ Dataset | 7B | 13B | 33B | 65B
152
+ ---|---|---|---|---
153
+ LLaMA no tuning | 35.1 | 46.9 | 57.8 | 63.4
154
+ Self-Instruct | 36.4 | 33.3 | 53.0 | 56.7
155
+ Longform | 32.1 | 43.2 | 56.6 | 59.7
156
+ Chip2 | 34.5 | 41.6 | 53.6 | 59.8
157
+ HH-RLHF | 34.9 | 44.6 | 55.8 | 60.1
158
+ Unnatural Instruct | 41.9 | 48.1 | 57.3 | 61.3
159
+ OASST1 (Guanaco) | 36.6 | 46.4 | 57.0 | 62.2
160
+ Alpaca | 38.8 | 47.8 | 57.3 | 62.5
161
+ FLAN v2 | 44.5 | 51.4 | 59.2 | 63.9
162
+
163
+ ## Risks and Biases
164
+ The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. The model was trained on various public datasets; it is possible that this model could generate lewd, biased, or otherwise offensive outputs.
165
+
166
+ However, we note that finetuning on OASST1 seems to reduce biases as measured on the CrowS dataset. We report here the performance of Guanaco-65B compared to other baseline models on the CrowS dataset.
167
+
168
+ | | LLaMA-65B | GPT-3 | OPT-175B | Guanaco-65B |
169
+ |----------------------|-----------|-------|----------|---------------|
170
+ | Gender | 70.6 | 62.6 | 65.7 | **47.5** |
171
+ | Religion | {79.0} | 73.3 | 68.6 | **38.7** |
172
+ | Race/Color | 57.0 | 64.7 | 68.6 | **45.3** |
173
+ | Sexual orientation | {81.0} | 76.2 | 78.6 | **59.1** |
174
+ | Age | 70.1 | 64.4 | 67.8 | **36.3** |
175
+ | Nationality | 64.2 | 61.6 | 62.9 | **32.4** |
176
+ | Disability | 66.7 | 76.7 | 76.7 | **33.9** |
177
+ | Physical appearance | 77.8 | 74.6 | 76.2 | **43.1** |
178
+ | Socioeconomic status | 71.5 | 73.8 | 76.2 | **55.3** |
179
+ | Average | 66.6 | 67.2 | 69.5 | **43.5** |
180
+
181
+ ## Citation
182
+
183
+ ```bibtex
184
+ @article{dettmers2023qlora,
185
+ title={QLoRA: Efficient Finetuning of Quantized LLMs},
186
+ author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
187
+ journal={arXiv preprint arXiv:2305.14314},
188
+ year={2023}
189
+ }
190
+ ```
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/guanaco-7b/",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "max_sequence_length": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "pad_token_id": 0,
18
+ "rms_norm_eps": 1e-06,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.29.2",
22
+ "use_cache": true,
23
+ "vocab_size": 32000
24
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.29.2"
7
+ }
quantize_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.01,
5
+ "desc_act": false,
6
+ "sym": true,
7
+ "true_sequential": true
8
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 2048,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }