lobrien001's picture
Model save
121edf9 verified
|
raw
history blame
4.37 kB
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-finetuned-ner
    results: []

roberta-base-finetuned-ner

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1185
  • Precision: 0.7791
  • Recall: 0.8034
  • F1: 0.7910
  • Accuracy: 0.7680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.19 50 1.2727 0.6213 0.4935 0.5501 0.4934
No log 0.37 100 1.2623 0.6398 0.5312 0.5805 0.5263
No log 0.56 150 1.2519 0.6609 0.5693 0.6117 0.5593
No log 0.75 200 1.2423 0.6713 0.5940 0.6303 0.5815
No log 0.93 250 1.2330 0.6828 0.6167 0.6481 0.6014
No log 1.12 300 1.2241 0.6914 0.6388 0.6640 0.6219
No log 1.31 350 1.2158 0.6962 0.6540 0.6744 0.6350
No log 1.49 400 1.2076 0.6995 0.6637 0.6811 0.6434
No log 1.68 450 1.2000 0.7048 0.6767 0.6905 0.6545
1.2539 1.87 500 1.1926 0.7093 0.6880 0.6985 0.6645
1.2539 2.05 550 1.1859 0.7148 0.6990 0.7068 0.6736
1.2539 2.24 600 1.1793 0.7206 0.7092 0.7148 0.6824
1.2539 2.43 650 1.1733 0.7269 0.7209 0.7239 0.6935
1.2539 2.61 700 1.1676 0.7340 0.7306 0.7323 0.7025
1.2539 2.8 750 1.1620 0.7385 0.7380 0.7382 0.7091
1.2539 2.99 800 1.1569 0.7429 0.7451 0.744 0.7160
1.2539 3.17 850 1.1521 0.7496 0.7560 0.7528 0.7265
1.2539 3.36 900 1.1476 0.7539 0.7622 0.7580 0.7325
1.2539 3.54 950 1.1435 0.7552 0.7657 0.7604 0.7349
1.1751 3.73 1000 1.1399 0.7585 0.7718 0.7651 0.7405
1.1751 3.92 1050 1.1364 0.7626 0.7789 0.7706 0.7470
1.1751 4.1 1100 1.1332 0.7657 0.7835 0.7745 0.7513
1.1751 4.29 1150 1.1303 0.7700 0.7895 0.7796 0.7561
1.1751 4.48 1200 1.1278 0.7727 0.7934 0.7829 0.7589
1.1751 4.66 1250 1.1256 0.7732 0.7945 0.7837 0.7600
1.1751 4.85 1300 1.1237 0.7744 0.7960 0.7851 0.7614
1.1751 5.04 1350 1.1221 0.7748 0.7973 0.7859 0.7622
1.1751 5.22 1400 1.1208 0.7766 0.7995 0.7879 0.7643
1.1751 5.41 1450 1.1198 0.7783 0.8021 0.7900 0.7665
1.1363 5.6 1500 1.1191 0.7789 0.8032 0.7908 0.7675
1.1363 5.78 1550 1.1187 0.7791 0.8034 0.7910 0.7680
1.1363 5.97 1600 1.1185 0.7791 0.8034 0.7910 0.7680

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2