bartowski commited on
Commit
0ea9364
1 Parent(s): cf06e00

Llamacpp quants

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ xLAM-7b-r-Q4_0_4_4.gguf filter=lfs diff=lfs merge=lfs -text
37
+ xLAM-7b-r-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
38
+ xLAM-7b-r-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
39
+ xLAM-7b-r-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ extra_gated_heading: >-
3
+ Acknowledge to follow corresponding license to access the
4
+ repository
5
+ extra_gated_button_content: Agree and access repository
6
+ extra_gated_fields:
7
+ First Name: text
8
+ Last Name: text
9
+ Country: country
10
+ Affiliation: text
11
+ license: cc-by-nc-4.0
12
+ datasets:
13
+ - Salesforce/xlam-function-calling-60k
14
+ language:
15
+ - en
16
+ pipeline_tag: text-generation
17
+ tags:
18
+ - function-calling
19
+ - LLM Agent
20
+ - tool-use
21
+ - mistral
22
+ - pytorch
23
+ quantized_by: bartowski
24
+ ---
25
+
26
+ ## Llamacpp Static (no imatrix) Quantizations of xLAM-7b-r
27
+
28
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3634">b3634</a> for quantization.
29
+
30
+ Original model: https://huggingface.co/Salesforce/xLAM-7b-r
31
+
32
+ ## Prompt format
33
+
34
+ No prompt format
35
+
36
+ ## Download a file (not the whole branch) from below:
37
+
38
+ | Filename | Quant type | File Size | Description |
39
+ | -------- | ---------- | --------- | ----------- |
40
+ | [xLAM-7b-r-Q8_0.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF/blob/main/xLAM-7b-r-Q8_0.gguf) | Q8_0 | 7.69GB | Extremely high quality, generally unneeded but max available quant. |
41
+ | [xLAM-7b-r-Q6_K.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF/blob/main/xLAM-7b-r-Q6_K.gguf) | Q6_K | 5.94GB | Very high quality, near perfect, *recommended*. |
42
+ | [xLAM-7b-r-Q5_K_M.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF//main/xLAM-7b-r-Q5_K_M.gguf) | Q5_K_M | | High quality, *recommended*. |
43
+ | [xLAM-7b-r-Q4_K_M.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF/blob/main/xLAM-7b-r-Q4_K_M.gguf) | Q4_K_M | 4.36GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
44
+ | [xLAM-7b-r-IQ4_NL.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF//main/xLAM-7b-r-IQ4_NL.gguf) | IQ4_NL | | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
45
+ | [xLAM-7b-r-Q3_K_L.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF//main/xLAM-7b-r-Q3_K_L.gguf) | Q3_K_L | | Lower quality but usable, good for low RAM availability. |
46
+ | [xLAM-7b-r-Q2_K.gguf](https://huggingface.co/bartowski/xLAM-7b-r-GGUF//main/xLAM-7b-r-Q2_K.gguf) | Q2_K | | Very low quality but surprisingly usable. |
47
+
48
+ ## Which file should I choose?
49
+
50
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
51
+
52
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
53
+
54
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
55
+
56
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
57
+
58
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
59
+
60
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
61
+
62
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
63
+
64
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
65
+
66
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
67
+
68
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
69
+
70
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
71
+
72
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
xLAM-7b-r-Q4_0_4_4.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3e21e6ddd15f8a8fdd4124c260e56be36552766f304ef9a40c76c0fcc50473c
3
+ size 4108917536
xLAM-7b-r-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:958bf531e3ce95885933e453a8fb2bf14fd2dfaec702d2e26ace36d9691385f3
3
+ size 4368440096
xLAM-7b-r-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:873e5076c9e0a9f48c7a989ec115dd6f03d930b3649861cd5fad7eae79c2d072
3
+ size 5942065952
xLAM-7b-r-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:277eb880380d6df4be4d0a05b2ef0f62a741ffce6145890bd901dce1f5d92bc1
3
+ size 7695858464