bartowski commited on
Commit
0653a08
0 Parent(s):

Duplicate from bartowski/Phi-3.1-mini-4k-instruct-GGUF

Browse files
.gitattributes ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Phi-3.1-mini-4k-instruct-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Phi-3.1-mini-4k-instruct-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Phi-3.1-mini-4k-instruct-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Phi-3.1-mini-4k-instruct-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Phi-3.1-mini-4k-instruct-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Phi-3.1-mini-4k-instruct-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Phi-3.1-mini-4k-instruct-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Phi-3.1-mini-4k-instruct-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Phi-3.1-mini-4k-instruct-Q2_K_L.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Phi-3.1-mini-4k-instruct-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Phi-3.1-mini-4k-instruct-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Phi-3.1-mini-4k-instruct-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Phi-3.1-mini-4k-instruct-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Phi-3.1-mini-4k-instruct-Q4_K_L.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Phi-3.1-mini-4k-instruct-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Phi-3.1-mini-4k-instruct-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Phi-3.1-mini-4k-instruct-Q5_K_L.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Phi-3.1-mini-4k-instruct-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Phi-3.1-mini-4k-instruct-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Phi-3.1-mini-4k-instruct-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Phi-3.1-mini-4k-instruct-Q6_K_L.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Phi-3.1-mini-4k-instruct-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Phi-3.1-mini-4k-instruct-Q8_0_L.gguf filter=lfs diff=lfs merge=lfs -text
59
+ Phi-3.1-mini-4k-instruct-f32.gguf filter=lfs diff=lfs merge=lfs -text
60
+ Phi-3.1-mini-4k-instruct.imatrix filter=lfs diff=lfs merge=lfs -text
Phi-3.1-mini-4k-instruct-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9699edbdf39bc1f340fea92c21cb757d1646ad83c53d77ba388352ef18dc8ba1
3
+ size 1316394208
Phi-3.1-mini-4k-instruct-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73f683f983fcae99afee150c650ca485a04aa45b7af46119bbc8591602e3f97b
3
+ size 1215730912
Phi-3.1-mini-4k-instruct-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8a49a31fbf7aa9e160178ecbd6bb8ad92b6def79f9afed841818810d97b2f2a
3
+ size 1153036000
Phi-3.1-mini-4k-instruct-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9b164a58ddd7d48b658e26bded82c8eed963c342e25b39c4c6b88af48c5357
3
+ size 1855599328
Phi-3.1-mini-4k-instruct-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d5ba8c9dc670c4e8ca8464d3143fb40c9794cd80f8611b10f2a7fabd74c811b
3
+ size 1625174752
Phi-3.1-mini-4k-instruct-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97e8f002525b33990ba0de97e3518b88cdd71a6dbaeec0c216ee6d911f469b55
3
+ size 1513002208
Phi-3.1-mini-4k-instruct-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5f6f8af479c36ef6fae6159d9a2721b9ebb6774a5632206b76aba93a1152d68
3
+ size 2059852000
Phi-3.1-mini-4k-instruct-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96cbb81bc71fce8bf0d129944fee9887b8104bda3e2f33a9ad03ff7d54d492ca
3
+ size 1416203488
Phi-3.1-mini-4k-instruct-Q2_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35c8fdcbac6fda7c55530b0b5d87d263478129706b2147af855d77c5012ec035
3
+ size 1697084128
Phi-3.1-mini-4k-instruct-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95c0198bc43c89a6993e45789d902062f96b04dbf4d774f9120fd9de15069703
3
+ size 2087596768
Phi-3.1-mini-4k-instruct-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0218e7302c1a8cb9b409389672da22ba862be6f8a59ed09a6517182a452b676
3
+ size 1955476192
Phi-3.1-mini-4k-instruct-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:403196d86fd25bfa47e9ef6addb42a2098590d8daed9acf02824de50a8ccd921
3
+ size 1681797856
Phi-3.1-mini-4k-instruct-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a685273117d0d33a98b37ba7479f11b8d550d2eb9fc7ac99677739d56aebb7d
3
+ size 2358473440
Phi-3.1-mini-4k-instruct-Q4_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7fee2b1f828ac42ff2992a4d01a426f3187f401092ff000fc1ad31fc0ad5f49
3
+ size 2651026144
Phi-3.1-mini-4k-instruct-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39458b227a4be763b7eb39d306d240c3d45205e3f8b474ec7bdca7bba0158e69
3
+ size 2393231584
Phi-3.1-mini-4k-instruct-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1177c0e2bc7f5d352b9318b43e35fd51e060157791f7355623a9f4f4f43dcc3c
3
+ size 2188759264
Phi-3.1-mini-4k-instruct-Q5_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5e78255432fd4da5876fe00cc8778a7d07264134a73663741cc099d1e106440
3
+ size 3060757216
Phi-3.1-mini-4k-instruct-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb076f8f9e6c188a8251c626e4d89442c291215c82b2cb06e1efed0941fc443a
3
+ size 2815275232
Phi-3.1-mini-4k-instruct-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be633b5b011cb43478fe26645a81a867a44f171f4d81ebff247a6a7bbdccf2f
3
+ size 2641473760
Phi-3.1-mini-4k-instruct-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb351805ef1513ab473792bdf5357f27beb5a22b68d11e47ef735fa682e30ed
3
+ size 3135852256
Phi-3.1-mini-4k-instruct-Q6_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb824342341dd2108eb4b0114d56bdee026eac9ab84f033ca36ad2d45ed6a4e
3
+ size 3368252128
Phi-3.1-mini-4k-instruct-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcf4f75cc9df7fdc487589e5e9624f4b8486a533135c5df294037c2678cc13ca
3
+ size 4061221600
Phi-3.1-mini-4k-instruct-Q8_0_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1acd78c643cca666a97b13fe4d0320168f6c887c08b61b946ae3fc4687185cb2
3
+ size 4245910240
Phi-3.1-mini-4k-instruct-f32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b715fd68a4726d7322864dd6a83a0eecad2d59c8282ec509b2d8648cbace7360
3
+ size 15285055936
Phi-3.1-mini-4k-instruct.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:612d95098ce811c6e5af588d5f4dc3d792fa4edd42a5967a46a9ebe753b6684c
3
+ size 2232617
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/LICENSE
4
+
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nlp
10
+ - code
11
+ inference:
12
+ parameters:
13
+ temperature: 0.0
14
+ widget:
15
+ - messages:
16
+ - role: user
17
+ content: Can you provide ways to eat combinations of bananas and dragonfruits?
18
+ quantized_by: bartowski
19
+ ---
20
+
21
+ ## Llamacpp imatrix Quantizations of Phi-3.1-mini-4k-instruct
22
+
23
+ <b>I'm calling this Phi-3.1 because Microsoft made the decision to release a huge update in place.. So yes, it's the new model from June 2nd 2024, but I've renamed it for clarity.</b>
24
+
25
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3278">b3278</a> for quantization.
26
+
27
+ Original model: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
28
+
29
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
30
+
31
+ ## Prompt format
32
+
33
+ ```
34
+ <|system|> {system_prompt}<|end|><|user|> {prompt}<|end|><|assistant|>
35
+ ```
36
+
37
+ ## Download a file (not the whole branch) from below:
38
+
39
+ | Filename | Quant type | File Size | Description |
40
+ | -------- | ---------- | --------- | ----------- |
41
+ | [Phi-3.1-mini-4k-instruct-Q8_0_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q8_1.gguf) | Q8_0_L | 4.24GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Extremely high quality, generally unneeded but max available quant. |
42
+ | [Phi-3.1-mini-4k-instruct-Q8_0.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q8_0.gguf) | Q8_0 | 4.06GB | Extremely high quality, generally unneeded but max available quant. |
43
+ | [Phi-3.1-mini-4k-instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q6_K_L.gguf) | Q6_K_L | 3.36GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Very high quality, near perfect, *recommended*. |
44
+ | [Phi-3.1-mini-4k-instruct-Q6_K.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q6_K.gguf) | Q6_K | 3.13GB | Very high quality, near perfect, *recommended*. |
45
+ | [Phi-3.1-mini-4k-instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q5_K_L.gguf) | Q5_K_L | 3.06GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. High quality, *recommended*. |
46
+ | [Phi-3.1-mini-4k-instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q5_K_M.gguf) | Q5_K_M | 2.81GB | High quality, *recommended*. |
47
+ | [Phi-3.1-mini-4k-instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q5_K_S.gguf) | Q5_K_S | 2.64GB | High quality, *recommended*. |
48
+ | [Phi-3.1-mini-4k-instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q4_K_L.gguf) | Q4_K_L | 2.65GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Good quality, uses about 4.83 bits per weight, *recommended*. |
49
+ | [Phi-3.1-mini-4k-instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q4_K_M.gguf) | Q4_K_M | 2.39GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
50
+ | [Phi-3.1-mini-4k-instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q4_K_S.gguf) | Q4_K_S | 2.18GB | Slightly lower quality with more space savings, *recommended*. |
51
+ | [Phi-3.1-mini-4k-instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ4_XS.gguf) | IQ4_XS | 2.05GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
52
+ | [Phi-3.1-mini-4k-instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q3_K_XL.gguf) | Q3_K_XL | 2.35GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Lower quality but usable, good for low RAM availability. |
53
+ | [Phi-3.1-mini-4k-instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q3_K_L.gguf) | Q3_K_L | 2.08GB | Lower quality but usable, good for low RAM availability. |
54
+ | [Phi-3.1-mini-4k-instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q3_K_M.gguf) | Q3_K_M | 1.95GB | Even lower quality. |
55
+ | [Phi-3.1-mini-4k-instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ3_M.gguf) | IQ3_M | 1.85GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
56
+ | [Phi-3.1-mini-4k-instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q3_K_S.gguf) | Q3_K_S | 1.68GB | Low quality, not recommended. |
57
+ | [Phi-3.1-mini-4k-instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ3_XS.gguf) | IQ3_XS | 1.62GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
58
+ | [Phi-3.1-mini-4k-instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ3_XXS.gguf) | IQ3_XXS | 1.51GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
59
+ | [Phi-3.1-mini-4k-instruct-Q2_K.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-Q2_K.gguf) | Q2_K | 1.41GB | Very low quality but surprisingly usable. |
60
+ | [Phi-3.1-mini-4k-instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ2_M.gguf) | IQ2_M | 1.31GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
61
+ | [Phi-3.1-mini-4k-instruct-IQ2_S.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ2_S.gguf) | IQ2_S | 1.21GB | Very low quality, uses SOTA techniques to be usable. |
62
+ | [Phi-3.1-mini-4k-instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/Phi-3.1-mini-4k-instruct-GGUF/blob/main/Phi-3.1-mini-4k-instruct-IQ2_XS.gguf) | IQ2_XS | 1.15GB | Very low quality, uses SOTA techniques to be usable. |
63
+
64
+ ## Downloading using huggingface-cli
65
+
66
+ First, make sure you have hugginface-cli installed:
67
+
68
+ ```
69
+ pip install -U "huggingface_hub[cli]"
70
+ ```
71
+
72
+ Then, you can target the specific file you want:
73
+
74
+ ```
75
+ huggingface-cli download bartowski/Phi-3.1-mini-4k-instruct-GGUF --include "Phi-3.1-mini-4k-instruct-Q4_K_M.gguf" --local-dir ./
76
+ ```
77
+
78
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
79
+
80
+ ```
81
+ huggingface-cli download bartowski/Phi-3.1-mini-4k-instruct-GGUF --include "Phi-3.1-mini-4k-instruct-Q8_0.gguf/*" --local-dir Phi-3.1-mini-4k-instruct-Q8_0
82
+ ```
83
+
84
+ You can either specify a new local-dir (Phi-3.1-mini-4k-instruct-Q8_0) or download them all in place (./)
85
+
86
+ ## Which file should I choose?
87
+
88
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
89
+
90
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
91
+
92
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
93
+
94
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
95
+
96
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
97
+
98
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
99
+
100
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
101
+
102
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
103
+
104
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
105
+
106
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
107
+
108
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
109
+
110
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski