model update
Browse files
README.md
CHANGED
@@ -69,6 +69,27 @@ model-index:
|
|
69 |
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
70 |
type: qa_aligned_precision_moverscore_question_answer_generation
|
71 |
value: 78.93
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
---
|
73 |
|
74 |
# Model Card of `lmqg/mt5-small-koquad-qg-ae`
|
@@ -139,6 +160,22 @@ question = pipe("extract answers: 또한 스피어스는 많은 새로운 여성
|
|
139 |
| QAAlignedRecall (MoverScore) | 86.69 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
140 |
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
## Training hyperparameters
|
144 |
|
|
|
69 |
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
70 |
type: qa_aligned_precision_moverscore_question_answer_generation
|
71 |
value: 78.93
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 38.2
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 82.32
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 59.91
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 95.65
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 94.61
|
87 |
+
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
+
value: 86.98
|
90 |
+
- name: AnswerExactMatch (Answer Extraction)
|
91 |
+
type: answer_exact_match_answer_extraction
|
92 |
+
value: 80.78
|
93 |
---
|
94 |
|
95 |
# Model Card of `lmqg/mt5-small-koquad-qg-ae`
|
|
|
160 |
| QAAlignedRecall (MoverScore) | 86.69 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
161 |
|
162 |
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_koquad.default.json)
|
164 |
+
|
165 |
+
| | Score | Type | Dataset |
|
166 |
+
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
167 |
+
| AnswerExactMatch | 80.78 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
168 |
+
| AnswerF1Score | 86.98 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
169 |
+
| BERTScore | 95.65 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
170 |
+
| Bleu_1 | 75.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
171 |
+
| Bleu_2 | 66.16 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
172 |
+
| Bleu_3 | 53.61 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
173 |
+
| Bleu_4 | 38.2 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
174 |
+
| METEOR | 59.91 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
175 |
+
| MoverScore | 94.61 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
176 |
+
| ROUGE_L | 82.32 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
177 |
+
|
178 |
+
|
179 |
|
180 |
## Training hyperparameters
|
181 |
|